• Title/Summary/Keyword: 소나 센서 배열

Search Result 27, Processing Time 0.026 seconds

A Simulator Development for Determining the Sonar Sensor Configuration of Unmanned Underwater Vehicles Based on a Hold-at-Risk Scenario (위험제어 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터 개발)

  • Shin, Myoungin;Lee, Jinho;Hong, Wooyoung;Kim, Woo Shik;Bae, Hoseuk;Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.21-33
    • /
    • 2020
  • This study develops a simulator for determining the sonar sensor configuration of unmanned underwater vehicles (UUVs) based on a scenario, in order for UUVs to conduct an effective anti-submarine warfare (ASW). First, we analyze the missions and operational concepts of UUVs in the field of ASW, and then select a Hold-at-Risk scenario as the one with the highest priority. Next, for modeling the components of a simulator, the motion, acoustic characteristic, and environment condition of the platforms (UUV and target submarine) are specified. Especially, based on the beam pattern of each sonar configuration considered in this paper, the passive sonar equation is used to verify target detection, and we further estimate the azimuth and elevation of the target using amplitude and phase of the received signal, respectively. The simulation results show the performance tendency depending on the sonar sensor configurations of a UUV, and the simulator provides a high applicability under various scenarios.

An Efficient Separable Weighting Method for Sonar Systems with Non-Separable Planar Arrays (소나시스템 비분리 평면센서배열의 효율적인 분리 가중치 기법)

  • Do, Dae-Won;Kim, Woo-Sik;Lee, Dong-Hun;Kim, Hyung-Moon;Choi, Sang-Moon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.208-217
    • /
    • 2013
  • When a beamforming can be processed separately in horizontal and vertical directions with the planar arrays used in sonar systems, there are several merits such as that practically reduce the required computations and volumes. However, the common planar arrays used in sonar systems are generally non-separable, so the beamforming with separable weighting results in the differences between the desired beam characteristics and the resultant beam characteristics. In this paper, we propose a new separable weighting method which can achieve the wanted beam characteristics by using the separable weights in horizontal and vertical directions for the non-separable planar arrays. In order to achieve the wanted beam characteristics, the proposed method minimizes the differences between the desired weights and the resultant weights based on the number of effective sensors in horizontal and vertical directions of the planar arrays.

Performance analysis of sensor selection methods for beam steering direction of non-linear conformal array (비선형 곡면 배열 센서의 빔 지향 방위별 센서 선택 방법에 대한 성능 분석)

  • Kwon, Taek-ik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.391-399
    • /
    • 2021
  • The conformal array sensor has different sub-array depending on different beam steering directions. According to the method to effective the sensor, the performance of the conformal array sensor can be different, where the sub-array selects an effective sensor. Also, due to the figure of the conformal array sensor, the figure of the sub-array can be different each other, which results in different performance on directivity index, beam width and etc. In this paper, two methods to select sub-array which is the criteria for each sensors position vector and directive vector were proposed. For two sub-array selection methods, the performance of the directivity index, horizontal and vertical beam width were compared with the average and variance. In addition, this comparison was conducted when the number of sensors was fixed. When the number of sensors was not fixed, the directional vector method mainly results in high performance, but the performance of vertical beam width was lower or equal. When the number of sensors was fixed, the performance of two methods is similar, but the performance of variance was deteriorated.

Robust adpative beamforming for triplet sonar arrays (삼중 배열 소나를 위한 강인한 적응 빔형성 기법)

  • Ahn, Jae-Kyun;Ryu, Yongwoo;Chun, Seung-Yong;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • We propose a robust adaptive beamforming algorithm for triplet array sonar. The proposed beamforming algorithm obtains robustness to mismatches, left/right discrimination, and has two steps. The first is a cardioid beamformer, which supports left/right discrimination of target signals. It applies the conventional delay-and-subtract to each triplet's signal with its rotation angle and obtains multiple cardioid beams. The second is a robust adaptive beamforming to minimize nearby interferences. We regard cardioid beams as input signals of a line array and apply an adaptive beamforming algorithm to the cardioid beams. Simulations results show that the proposed algorithm provides significantly better performance than the conventional algorithms, while supporting left/right discrimination of target signals.

Analysis of Performance of Focused Beamformer Using Water Pulley Model Array (수차 모형 배열을 이용한 표적추정 (Focused) 빔형성기 성능분석)

  • 최주평;이원철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.83-91
    • /
    • 2001
  • This paper proposes the Focused beamforming to estimate the location of target residing near to the observation platform in the underwater environment. The Focused beamforming technique provides the location of target by the coherent summation of a series of incident spherical waveforms considering distinct propagation delay times at the sensor array. But due to the movement of the observation platform and the variation of the underwater environment, the shape of the sensor array is no longer to be linear but it becomes distorted as the platform moves. Thus the Focused beamforming should be peformed regarding to the geometric shape variation at each time. To estimate the target location, the artificial image plane comprised of cells is constructed, and the delays are calculated from each cell where the target could be proximity to sensors for the coherent summation. After the coherent combining, the beam pattern can be obtained through the Focused beamforming on the image plane. Futhermore to compensate the variation of the shape of the sensor array, the paper utilizes the Nth-order polynomial approximation to estimate the shape of the sensor array obeying the water pulley modeling. Simulation results show the performance of the Focused beamforming for different frequency bands of the radiated signal.

  • PDF

Modified Multiple Target Angle Tracking Algorithm with Efficient Equation for Angular Innovation (효율적인 방위각 이노베이션 계산식을 가진 수정된 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • Ryu et al. proposed a multiple target angle-tracking algorithm with efficient equation for angular innovation, and Ryu's algorithm has good feature that it has no data association problem. Ryu's algorithm is only applicable to linear sensor array, because its efficient equation for angular innovation is derived in case of using a linear sensor array. In a many fields studying multiple target angle-tracking, the various shapes of sensor array are used. In sonar, a cylindrical sensor array is as much used as a linear sensor array, a example is hull mounted sonar. In this paper, Ryu's algorithm is modified to be applicable to cylindrical sensor array, and the tracking performance of a modified algorithm is verified by various computer simulations.

Adaptive beamforming of triplet arrays for active sonar systems (능동소나 시스템을 위한 삼중 배열의 적응 빔형성)

  • Ahn, Jae-Kyun;Ryu, Yongwoo;Chun, Seung-Yong;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • In this paper, we propose an adaptive beamforming algorithm of triplet arrays for active sonar systems. The proposed algorithm consists of three steps: matched filters, cardioid beamforming, and line array beamforming. First, we apply a matched filter of a transmitted pulse to received individual sensor signals and obtain filterd signals. Then, we perform the fast Fourier transform to the matched filter results, and make a cardioid beam for each triplet data, respectively. Finally, we apply an adaptive beamforming by assuming that the cardioid beams are input signals of a line array. Experimental results demonstrate that the proposed algorithm provides better performances than conventional algorithms.

Radiation power estimation for the planar array acoustic sensor considering mutual coupling effects (상호간섭영향을 고려한 평면배열형 음향센서의 방사출력 예측)

  • Lee, Jong-Kil;Seo, In-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.194-199
    • /
    • 1996
  • 평면 배열형 소나 센서에서는 트랜스듀서 상호간의 간섭효과들이 음을 방사하는 각각의 트랜스듀서 및 평면 배열의 빔패턴에 영향을 주게된다. 따라서 음향 방사출력의 계산은 소나용 트랜스듀서의 성능및 효율을 평가하는데 필수적이다. 음향 방사출력을 예측하기 위하여 무한 강성 배플에 고정된 수개의 트랜스듀서를 이론해석의 대상으로 설정하였다. 각 트랜스듀서는 자기방사 임피던스 및 상호방사 임피던스로 구성되어 있으며 이것의 총 방사 임피던스 및 음향반사 출력의 추출은 등가 전기회로 모델을 이용하였다. 이론및 수치해석의 결과에 근거하여 음향방사 출력은 각 트랜스듀서 상호간의 간섭의 양에 의존함을 보였으며 상호간섭에 의한 음향출력 손실은 25.05%에서 최고 51.52%정도임을 확인하였다.

  • PDF

Ship Radiated Noise Measurement, Analysis and Prediction (선박 방사소음의 측정, 분석 및 예측)

  • 윤종락;김천덕;하강열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.524-532
    • /
    • 1997
  • 수중음향표적 특히 선박방사소음을 탐지하거나 식별하는 군사적 목적의 수동소나는 수중청음기 배열로 구성되며 각 배열센서에 수신된 신호에 배열 신호처리기술을 적용하여 선박의 거리, 방위 탐지는 물론 선박의 음향적 특징을 식별하는 고도의 음향장치이다. 그러나 이러한 장치운용자의 선박탐지, 식별이나 새로운 수동소나 개발, 나아가 스텔스 능력의 선박 설계를 위해서는 선박방사소음의 측정, 분석 및 예측에 관한 이해가 선행되어야 할 것이다. 본 연구는 대표적인 선박방사소음 측정시스템의 소개, 방사소음발생기구, 측정자료의 분석 및 예측에 관한 기초기술을 연구 분석한 내용이다.

  • PDF

An acoustic sensor fault detection method based on root-mean-square crossing-rate analysis for passive sonar systems (수동 소나 시스템을 위한 실효치교차율 분석 기반 음향센서 결함 탐지 기법)

  • Kim, Yong Guk;Park, Jeong Won;Kim, Young Shin;Lee, Sang Hyuck;Kim, Hong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.30-38
    • /
    • 2017
  • In this paper, we propose an underwater acoustic sensor fault detection method for passive sonar systems. In general, a passive sonar system displays processed results of array signals obtained from tens of the acoustic sensors as a two-dimensional image such as displays for broadband or narrowband analysis. Since detection result display in the operation software is to display the accumulated result through the array signal processing, it is difficult to determine the possibility where signal may be contaminated by the fault or failure of a single channel sensor. In this paper, accordingly, we propose a detection method based on the analysis of RMSCR (Root Mean Square Crossing-Rate), and the processing techniques for the faulty sensors are analyzed. In order to evaluate the performance of the proposed method, the precision of detecting fault sensors is measured by using signals acquired from real array being operated in several coastal areas. Besides, we compare performance of fault processing techniques. From the experiments, it is shown that the proposed method works well in underwater environments with high average RMS, and mute (set to zero) shows the best performance with regard to fault processing techniques.