• Title/Summary/Keyword: 소나방정식

Search Result 17, Processing Time 0.022 seconds

Simulation System Design and Development for Search Strategy Analysis of Under Water Target (수중 표적 탐색전술 분석용 시뮬레이션 시스템 설계 및 개발)

  • Park, Young-man;Shin, Seoung Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.539-542
    • /
    • 2009
  • 해군에서는 소나를 이용하여 수중 표적을 효과적으로 탐색하기 위한 소나운용전술을 개발하기 위해 노력하고 있다. 효율적인 소나운용전술 개발을 위해서는 먼저 다양한 운영전술에 대한 효과도를 분석할 수 있는 시뮬레이션 시스템이 필요하다. 시뮬레이션 시스템은 해양환경 정보, 자함 정보, 소나 정보, 그리고 수중표적의 정보를 매개변수로 입력받아 운용전술에 대한 시뮬레이션을 수행하며, 시뮬레이션의 진행에 따른 다양한 정보를 제공할 수 있어야 한다. 본 연구에서는 다양한 환경에서 수중표적에 대한 함정의 최적 탐색 전략을 평가할 수 있는 탐색효과도 분석용 시뮬레이션 시스템을 설계 개발하였다. 시뮬레이션 시스템은 다양한 형태의 해양상태를 반영할 수 있도록 소나방정식 및 탐지확률곡선을 이용하여 개발되었으며, 표적의 실제적인 행동패턴을 고려하여 여러 가지 형태의 기동 패턴을 시스템에 묘사하였다. 개발된 시스템은 앞으로 수중표적에 대한 효율적인 소나운용전술을 개발하고 발전시키는데 유용하게 사용될 수 있을 것으로 판단된다.

  • PDF

능동 소나 체계에서의 표적 탐지 거리 예측 알고리즘과 응용

  • 박재은
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.186-189
    • /
    • 1993
  • 능동 소나 체계에서 표적의 탐지거리 예측을 위하여 소나방정식이 이용되는데, 이는 음원 준위, 전달 손실, 표적 강도, 복반사 준위, 소음 준위, 방향성 이득, Detection threshold, Signal excess, 탐지 확률과 탐지거리의 요소로 구성된다. 본 연구에서는 능동 소나 체계에서 소나 깊이와 표적 깊이의 함수인 탐지거리를 계산하기 위한 알고리즘에 대해 살펴보았다. 소나의 각 요소와 환경이 주어졌을 때 SAFARI 모델을 이용하여 각 수신기의 깊이와 거리에서의 전달손실을 계산하였으며, 구하여진 전달 손실과 배경 소음 준위를 이용하여 Signal excess를 계산하였다. ROC(Receiver-operating-characteristic) 곡선을 이용하여 Signal excess를 탐지 확률로 계산한 후 두 항을 곱하여 각 깊이별 거리로 적분함으로서 탐지거리를 구하였다. 주파수 30Hz의 전방향 음원을 사용하여 여름의 일반적 음속 분포에서 계산한 결과 100m 음원 보다 300m 음원에서 상대적으로 큰 탐지거리를 얻었으며 각 음원 깊이별 평균 탐지거리는 100m 이하의 표면을 제외한 500m 까지는 거의 일정함을 알 수 있었다.

  • PDF

Simulation System Design and Development for Analysis of the Search Strategy for Underwater Targets (수중 표적 탐색전술 분석용 시뮬레이션 시스템 설계 및 개발)

  • Park, Young-Man;Shin, Seoung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2753-2758
    • /
    • 2009
  • The Navy is trying to develop a sonar-operation strategy that efficiently searches for underwater targets. To develop an efficient sonar-operation strategy, a simulation system, which can analyze the efficiency of various operation strategies, is needed. The simulation executes the strategical operation by collecting information of sea environment, destroyer, sonar, and target. Also, it should be able to provide diverse information according to its progression. In this study, the simulation system that can evaluate and analyze the effectiveness of the search strategy for underwater targets in different environments was designed and developed. The simulation system was developed, utilizing the sonar equation and the lateral-range-curve, and it portrays many patterns of realistic movements of a target. This system will contribute to developing and improving efficient sonar-operation strategies to find underwater targets in the future.

Detection Range of Passive Sonar System in Range-Dependent Ocean Environment (거리의존 해양환경에서 수동소나체계의 표적탐지거리예측)

  • Kim, Tae-Hak;Kim, Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.29-34
    • /
    • 1997
  • The prediction of detection range of a passive sonar system is essential to estimate the performance and to optimize the operation of a developed sonar system. In this paper, a model for the prediction of detection range in a range-dependent ocean environment based on the sonar equation is developed and tested. The prediction model calculates the transmission loss using PE propagation model, signal excess, and the detection probability at each target depth and range. The detection probability is integrated to give the estimated detection range. In order to validate the developed model, two cases are considered. One is the case when target depth is known. The other is the case when the target depth is unknown. The computational results agree well with the previously published results for the range-independent environment. Also,the developed model is applied to the range-dependent ocean environment where the warm eddy exists. The computational results are shown and discussed. The developed model can be used to find the optimal frequency of detection, as well as the optimal search depth for the given range-dependent ocean environment.

  • PDF

Detection Range Estimation Algorithm for Active SONAR System and Application to the Determination of Optimal Search Depth (능동 소나 체계에서의 표적 탐지거리 예측 알고리즘과 최적 탐지깊이 결정에의 응용)

  • 박재은;김재수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.62-70
    • /
    • 1994
  • In order to estimate the detection range of a active SONAR system, the SONAR equation is commonly used. In this paper, an algorithm to calculate detection range in active SONAR system as function of SONAR depth and target depth is presented. For given SONAR parameters and environment, the transmission loss and background level are found, signal excess is computed. Using log-normal distribution, signal excess is converted to detection probability at each range. Then, the detection range is obtained by integrating the detection probability as function of range for each depth. The proposed algorithm have been applied to the case of omni-directional source with center frequency 30Hz for summer and winter sound profiles. It is found that the optimal search depth is the source depth since the detection range increase at source depth where the signal excess is maximized.

  • PDF

Intelligent Range Decision Method for Figure of Merit of Sonar Equation (소나 방정식 성능지수의 지능형 거리 판단기법)

  • Son, Hyun Seung;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.304-309
    • /
    • 2013
  • This paper proposes a intelligent approach on range decision of figure of merit. Unknown range of the underwater target and the non-fixed signal excess make the uncertainty for the tracking process. Using the input data of signal excess related to the range, we establish the rule of the fuzzy set and the original data acquired by sonar can be transformed to the fuzzified data set. To reduce the error arisen from the unexpected data, we use the new data transformed in fuzzy set. The piecewise relations of the min value, max one, and the mean one are calculated. The three values are used for the expected range of the underwater target. By analysing the fluctuation of the data, we can expect the target's position and the characteristics of the maneuvering. The examples are presented to show the performance and the effectiveness of the proposed method.

A Simulator Development for Determining the Sonar Sensor Configuration of Unmanned Underwater Vehicles Based on a Hold-at-Risk Scenario (위험제어 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터 개발)

  • Shin, Myoungin;Lee, Jinho;Hong, Wooyoung;Kim, Woo Shik;Bae, Hoseuk;Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.21-33
    • /
    • 2020
  • This study develops a simulator for determining the sonar sensor configuration of unmanned underwater vehicles (UUVs) based on a scenario, in order for UUVs to conduct an effective anti-submarine warfare (ASW). First, we analyze the missions and operational concepts of UUVs in the field of ASW, and then select a Hold-at-Risk scenario as the one with the highest priority. Next, for modeling the components of a simulator, the motion, acoustic characteristic, and environment condition of the platforms (UUV and target submarine) are specified. Especially, based on the beam pattern of each sonar configuration considered in this paper, the passive sonar equation is used to verify target detection, and we further estimate the azimuth and elevation of the target using amplitude and phase of the received signal, respectively. The simulation results show the performance tendency depending on the sonar sensor configurations of a UUV, and the simulator provides a high applicability under various scenarios.

Analysis of Highly Directional Sonar Communication System (고지향 소나 시스템 통신 성능분석)

  • Lee, Jaeil;Lee, Chong Hyun;Lee, Seung Wook;Shin, Jungchae;Jung, Jin Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.3-9
    • /
    • 2012
  • In this paper, we present novel analysis results of sonar communication using parametric array. We consider transducer diameter, primary frequency, difference frequency and acoustic power as analysis parameters of communication performance. We calculate theoretical BER(Bit Error Rate) and channel capacity of MIMO(Multi Input and Multi Output) communication system. By considering practical parameters, we obtain optimum difference frequency generation condition. The obtained primary frequency is 560 kHz, difference frequency 45kHz and acoustic power is 28.05Watt. For BER of $10^{-4}$, the range gain of parametric array communication is 3.35km compared to primary frequency communication. For channel capacity of 10bps/Hz, the SISO and $2{\times}2$ MIMO communication range of parametric array communication are 3.8km and 3.98km respectively, while primary frequency communication range is 0.83km.

Performance Analysis of Friction Damper Considering the Change of the Vertical Force (수직력의 변화를 고려한 마찰댐퍼의 거동 분석)

  • Cho, Sung Gook;Park, Woong Ki;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • In this paper, to protect the piping in nuclear power plants and various plant facilities, we have developed a damper using the friction method and carried out a study to analyze the performance. Friction typed damper means a device for attenuating vibration by generating a frictional force to the bearing and the shaft by applying a compressive force to the MER-Spring. In order to analyze the performance of the damper, the properties of MER-Spring and friction materials were analyzed, a study on the effects of friction was carried out, and the behavior of this equation was established. And, to determine whether deformation of the material and to examine the reliability of the behavior equation established, prototypes was produced and, through a performance test and finite element analysis of a damper made of specimens, they were analyzed. As a result, it is noted that the reliability of the material was confirmed, the coefficient of friction have to be adjusted according to the velocity, cyclic loading test and finite element analysis results show exhibits excellent results. In addition, a review of the dynamic loads in the future shall be performed for the usage in more broad fields.

A Study of the Depth Control System and the Collision Avoidance System for the Manta-type UUV (만타형 UUV의 심도제어와 충돌회피에 관한 연구)

  • Kim, Ju-Han;Lee, Seung-Keon;Lee, Sang-Eui;Bae, Cheol-Han
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.447-452
    • /
    • 2008
  • In this paper, the automatic depth control system and the collision avoidance system of the Manta UUV have been established in vertical and horizontal plane. The PID control theory and the Fuzzy theory are adopted in this system. The 6-DOF MMG model had been established by theoretical calculations and captive model test results. The depth control simulation results have been fully presented. The collision risks of the UUV had calculated by the fuzzy theory with the virtual sonar system. Finally, the automatic depth control system and the collision avoidance simulation system of Manta UUV have been fully developed and simulated.