• Title/Summary/Keyword: 소규모 철골조

Search Result 6, Processing Time 0.02 seconds

Seismic Performance of Beam-to-column Weak-axis Moment Connection of Small-size Steel Structure (소규모 철골조 보-기둥 약축 모멘트 접합부의 내진성능)

  • Lim, Woo-Young;You, Young-Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.169-180
    • /
    • 2017
  • Cyclic loading tests for beam-to-column weak-axis connections were performed to investigate the seismic performance. In this study, the connections were developed to improve the constructability on the basis of investigation for existing small-size steel structures. The primary test parameter is the number of high-tension bolts which are used to connect steel beam and column using exterior and interior flange plates. Test results showed that the number of bolts had a significant effect on the cyclic behavior of beam-column weak-axis connections. From the analysis of test results, it is concluded that more than four bolts in the connections can satisfy the requirements of semi-rigid connection presented in current design codes. All of specimens showed the bearing failure around bolt holes and fracture at the beam flange. However, when the web height and the flange width is relatively small, the number of the bolts used in the connections might be limited. Thus, the additional research in this area is needed.

Cyclic Loading Test for Exposed Column-base Plate Connections of Small-size Steel Structures (소규모 철골조 노출형 주각부의 반복가력 실험)

  • Lim, Woo-Young;You, Young-Chan;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.34-45
    • /
    • 2017
  • Cyclic loading tests for a total of nine test specimens were performed to evaluate the seismic performance of the exposed steel column-base plate connections. From the tests, flexural strength, deformation capacity, energy dissipation, and initial stiffness were investigated. The primary test parameters were the thickness of base-plate, embedment length of anchor bolt, the presence of hook, and rib plates. Test results showed that flexural behavior of column base-plate connection was substantially affected by the base-plate thickness, embedment length and the number of anchor bolts. On the other hand, the effect of rib plates on the increase of the flexural performance was not observed. The initial stiffness of the test specimens was about 15% of the flexural stiffness obtained by assuming that the support is fixed. As a result, even if the exposed column base-plate is designed in accordance with current design recommendations, in case that bond strength between concrete and the anchor bolts is not sufficient, the base-plate connection showed an unaccceptable load-displacement behavior.

Seismic Performance Evaluation and Retrofit of a 2-Story Steel Building Using a Fragility Contour Method (취약성 등고선을 이용한 비내진 2층 철골조 건축물에 대한 내진성능 평가와 보강)

  • Shin, Ji-Uk;Lee, Ki-Hak;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Based on the Korean Building Standard Law, a building less than 3-stories and $1000m^2$ in area is defined as a small-level building and, as a result, this type of building has been excluded from the requirement to comply with seismic design. In order to prevent the loss of life and property under earthquake loadings, the small-scale building should satisfy the seismic performance specified in the current code through a seismic retrofit. In this study, a seismic retrofit scheme of a Buckling-Restrained Knee Brace (BRKB) was developed for non-seismic 2-story steel buildings, including small-scale buildings, using a fragility contour method. In order to develop an effective retrofit scheme of the BRKB for the building, a total of 75 BRKB analytical models were used to achieve the desired performance levels and analyzed using the fragility contour method. The seismic performance of the retrofitted building was evaluated in terms of the weight of the developed BRKB systems. This study shows that the fragility contour method can be used for rapid evaluation and is an effective tool for structural engineers.

Seismic Performance Enhancement of Exposed Column-base Plate Weak-axis Connections for Small-Sized Steel Buildings (소규모 철골조건축물을 위한 약축방향 노출형 주각부의 내진성능 향상)

  • You, Young-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • The purpose of this study is to enhance the seismic performance of exposed column-base plate weak-axis connections for small-sized steel buildings. According to the site inspection for the small-sized building construction, the arbitrary connection details in steel buildings have been applied at the job site, which is considered to be insufficient to guarantee structural safety and stability considering the increased seismic risk in Korea. Therefore, a series of test programs had been done to develop enhanced connection details in order to ensue the adequate seismic stability and safety of small-sized steel buildings. From the test results, It was found that the exposed column-base plate weak-axis connections commonly used in Korea shows very poor seismic behavior due to the "Rocking" phenomena caused by the residual plastic deformation of anchor bolts between anchor plate and concrete. A series of hysteretic tests for finding that solution were conducted to reduce the "Rocking" phenomena of the column-base plate connections, and local buckling of webs in H-column. Finally the enhanced stable seismic behavior was obtained by reinforcing at least 8 anchor bolts with good bonding strength and stiffeners to the webs in H-column.

Seismic Evaluation of Exposed Column-base Plate Weak-axis Connections Using L-shaped Hooked Anchor Bolts (L형 갈고리 앵커볼트를 사용한 약축방향 노출형 주각부의 내진성능 평가)

  • Lim, Woo-Young;You, Young-Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.269-280
    • /
    • 2017
  • In this study, seismic performance was evaluated for the exposed column-base plate weak-axis connections of small size steel structures through cyclic loading tests. The primary test parameters are the thickness of base plate, the presence of rib plates, the number of anchor bolts and embedment length of anchor bolts. To investigate the effect of bond performance of anchor bolts on the seismic performance of column-base plate connections, L-shaped round bars and thread bars were used as the hooked anchor bolts in the test specimens. Test results showed that bond performance of anchor bolts and the thickness of base plate significantly affect the structural performance and energy dissipation capacity. In particular, it was found that even if the requirements for minimum thickness of the base plate that is satisfied, the base plate can yield before the capacity of steel column reaches the plastic moment resulting in decreasing the structural performance of the connections. However, the proposed details of the connections might be considered as the partially restrained, that is semi-rigid connections. Consequently, the L-shaped thread anchor bolts is applicable in the exposed column-base plate weak-axis connections of small-size steel structures.

Experimental Study on Seismic Performance Enhancement of Exposed Column-base Plate Strong-axis Connections for Small-Sized Steel Buildings (소규모 철골조건축물 강축방향 노출형 주각부의 내진성능 향상을 위한 실험 연구)

  • You, Young-Chan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.11-20
    • /
    • 2018
  • The purpose of this study is to investigate the seismic performance of exposed column-base plate strong-axis connections for small-sized steel buildings. Even though the seismic design for small-sized buildings became mandatory since Dec.2017, the arbitrary connection details in steel structure have been applied at the construction site, which is considered to be very insufficient to secure structural safety and stability considering the increased seismic risk. Therefore, a series of experimental test programs had been carried out to develop enhanced connection details in order to ensue the adequate seismic safety of small buildings. The hysteretic behavior of the exposed column-base plate connections commonly used in Korea seem to be very pure poor due to the "Rocking" phenomena between anchor plate and concrete by the residual plastic deformation of anchor bolts. A series of hysteretic tests were conducted to find the solution to overcome the "Rocking" phenomena of the exposed column-base plate connections, finally the stable seismic behavior was obtained by uisng at least 8 anchor bolts with good bonding strength to the protptype specimen.