• Title/Summary/Keyword: 소구경 튜브

Search Result 3, Processing Time 0.017 seconds

Study on the Property of Guided Wave Signal Analysis according to Defect Shape of Small Size (소구경 튜브 결함 형태에 따른 유도초음파 신호 해석 특성에 관한 연구)

  • Gil, Doo-Song;Ahn, Yeon-Shik;Jung, Gye-Jo;Park, Sang-Gi;Kim, Yong-Gun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.410-417
    • /
    • 2012
  • Currently domestic thermal and nuclear power plants are comprised of many type's condenser and steam generator tubes to produce the electricity of good quality. There are some methods to inspect these tubes in the event that several defects were discovered in these facilities. Among many non-destructive methods, we used guided wave to inspect the soundness of tubes, because this method is very fast to detect the defect and very simple to install the equipment and also, can inspect up to the long range at a fixed point. Also, this method has a drawback that does not detect a very small size defect. So, we made an effort to overcome this drawback through the experimentation and signal analysis according to the size and shape of the defect through the manufacture of various artificial cracks capable to generate within the small size tube in the study and we anticipate that these detect limits can be overcome along with the development of the signal processing and manufacturing technology of the sensor for the inspection.

Development of Biocompatible Vascular Graft -Endothelialization of Small Vascular Graft- (생체적합성 인조혈관의 개발 -혈관내피화 인조혈관-)

  • 김형묵;이윤신
    • Journal of Chest Surgery
    • /
    • v.29 no.4
    • /
    • pp.373-380
    • /
    • 1996
  • Prevention of thromboembolism is the most important task in the development of bioconpatible small caliber artificial vascular graft. In normal vessels, vascular endothelial cells maintain homeosatsis by secreting numerous factors. The aim of this study is to develope a method which Improves biocompatibility of small caliver polyurethane graft using endothelial cell culture technique, and ev luate the efTectiveness of extracelluar matrix for endothelization which was produced by cultured fibroblast. Methods ; Multiporous polyurethane tube of 3 mm diameter, 0.3 mm thickness was manufactured for vascular graft. Three mongrel dogs were intubated and internal jugular veins removed. Extracelluar matrix produced by cultured flbrobast which was obtained from dog's internal jugular vein were coated to the polyurethane graft. Then, endothelial cells extracted from Jugular vein were cultured and fixed on the extracelluar matrix layer of vascular graft. Endothelial cell coated vascular grafts were implanted to the carotid arteries of experimental dogs as interposed autograft. Implanted grafts were removed after 3 and 6 weeks. As a control, PTFE graft was interposed on carotid artery. These experiments demonstrated that extracelluar matrix produced by fibroblast can afford a base for endothelial cell linings of polyurethane graft. Although thrombosis were developed on autografted en othelial cell coated graft, 33% opening was noticed, and showed less adhesion to adjacent tissue layer. These findings suggest that fiboblast produced extracelluar matrix which can be used for edothelial cell lining vascular graft, and by improving the cultured endothelial cell function, there will be a new modality for reducing thrombosis on small vascular graft.

  • PDF

Pullout Characteristics of Pressure Reinjection-Grouted Reinforcements in Decomposed Granite Soil (화강풍화토 지반에 설치된 압력재주입 그라우팅 보강재의 인발특성)

  • Shim, Yong-Jin;Lee, Jong-Kyu;Lee, Bong-Jik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.61-68
    • /
    • 2012
  • Most widely methods for reinforcement of soil utilized in Korea are anchor method, soil nail method and micro pile method. These methods are classified by the intended use of the structure to be constructed, but the reinforcement of the ground is accomplished contains in common the process of grouting work after inserting the reinforcements. Domestically, gravity grouting has been used mostly so far, but there has always been the risk of insufficient restoration of the loose ground area from the drill holes because the grouting is conducted only by gravity. On the other hand, pressure reinjection grouting may enhance the grouting quality by solving the problem of the existing grouting method considerably since it additionally reinjects grouting through pre-installed tube a certain time after the first grouting. Accordingly, this study evaluated the pullout characteristics by the grouting methods by performing model test on decomposed granite soil, and investigated the support increasing characteristics of reinforcements depending on the curing time, reinjection pressure, and uplift force variation of the pressure reinjection grouting. The result of this research shows that the pressure reinjection grouting demonstrated 1.1~1.3 times of performance of the gravity grouting, and suggests some analysis on optimal water content, reinjection pressure and curing time of the pressure reinjection grouting.