• 제목/요약/키워드: 소결온도

Search Result 953, Processing Time 0.031 seconds

Preparation of PZT Powders by Hydrothermal Synthesis : Effects of Starting Materials and the Agitation of Substrate on Powder Characteristics (수열합성법에 의한 PZT 분말제조 : 출발물질과 기질의 교반이 분말특성에 미치는 영향)

  • Jung, S.T.;Lee, K.J.;Seo, K.W.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.292-300
    • /
    • 1997
  • In this study PZT powders were prepared with shapes of cubic by hydrothermal synthesis with various starting materials, and the sintering characteristics of the powders were investigated. The particle shapes were cubic regardless of starting materials, but the mean size of particles formed using $Pb(NO_3)_2$, $Ti(OC_4H_9)_4$ and $Zr(OC_4H_9)_4$ was relatively smaller than that of particles prepared from other starting materials. Agitation of the feedstock during hydrothermal reaction results in decreasing the required reaction temperature for the formation of nuclei, and in increasing the size of product particles. XRD results showed that the major phase of PZT crystal powders was a tetragonal phase at the Zr to Ti ratio of 40 to 60, or a rhombohedral phase at its ratio of 60 to 40. The density of a sintered body made from the hydrothermal powders in PbO surrounding varied with sintering temperatures and with periods of sintering time. The experimental results also showed that the optimum sintering condition was at $1150^{\circ}C$ for a 2hr sintering, and that the density of a sintered body was $7.6g/cm^3$.

  • PDF

다층 PNN-PZT/Ag 복합체의 동시 소성을 위한 압전세라믹스의 저온소결 및 압전특성 평가

  • Lee, Myeong-U;Son, Yong-Ho;Kim, Seong-Jin;Yun, Man-Sun;Ryu, Seong-Rim;Gwon, Sun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-295
    • /
    • 2007
  • 기계적 에너지를 전기적 에너지로 변화하는 에너지 변환소자인 압전 세라믹스는 액츄에이터, 변압기, 초음파모터, 초음파 소자 및 각종 센서로 응용되고 있으며, 그 응용분야는 크게 증가하고 있다. 최근 이러한 에너지 변화 소자는 앞으로 도래하는 ubiquitous, 무선 모바일 시대의 휴대용 전자제품, robotics, 항공우주, 자동차, 의료, 건축, MEMS 분야 등의 대체 에너지원으로 응용하기 위한 연구가 진행되고 있다. 특히 인간의 동작 등과 같은 일상적인 동작으로 필요한 전력을 얻을 수 있고, 세라믹 소자를 이용하기 때문에 전자노이즈가 발생되지 않을 뿐 아니라 반영구적으로 사용할 수가 있어서, 기존 이차전지, 연료전지를 대체 또는 보완 할 수 있는 방안도 검토되고 있다. PZT계 세라믹스는 높은 유전상수와 압전특성으로 전자세라믹스분야에서 가장 널리 사용되어지고 있지만 $1200^{\circ}C$이상의 높은 소결온도 때문에 $1000^{\circ}C$ 부근에서 급격히 휘발되는 PbO로 인한 환경오염과 기본조성의 변화로 인한 압전 특성의 저하가 문제시되고 있다. 또한, 적층 세라믹스의 제작 시 구조적 특성상 내부 전극이 도포된 상태에서 동시 소결이 필요한데, 융점이 낮은 Ag전극 대신 값비싼 Pd나 Pt가 다량 함유된 Ag/Pd, Ag/Pt 전극이 사용되고 있어 경제적인 문제가 발생하게 된다. 따라서 순수 Ag 전극을 사용하거나, Ag의 비율이 높은 내부 전극을 사용하기 위해서는 $950^{\circ}C$ 이하에서 소결되는 압전 세라믹스를 개발 하는 것이 필요하다. 따라서 본 연구에서는 압전특성이 우수한 $(Pb_{1-x}Cd_x)\;[(Ni_{1/3}/Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}]O_3$계의 조성을 설계하여, 소결온도를 낮추기 위해서 2단계 하소법을 이용하였다. 분말을 ball milling을 통해 24시간 동안 혼합하였다. 혼합된 분말은 $800^{\circ}C$에서 2시간 동안 하소하였다. 하소한 분말을 72시간 동안 ball milling 하여 최종 분말을 얻었다. 최종 분말에 PVB를 첨가하여 ${\Phi}21$ disk 형태로 성형한 후, $800{\sim}950^{\circ}C$ 소결을 하였다. 최종 분말 및 소결된 시편을 XRD분석을 통하여 상을 확인하였고, SEM을 이용하여 미세조직을 관찰하였다. 전기적 특성을 확인하기 위하여 두께 1mm로 연마한 시편에 Ag 전극을 도포하여 열처리한 후, 분극 처리하였다. 압전특성은 $d_{33}$ 미터로 측정하였고, impedance analyzer를 이용하여 주파수 및 impedance 특성을 측정하였다. 그 결과 $900^{\circ}C$에서 우수한 압전 특성 및 전기적 특성을 확보 할 수 있었다.

  • PDF

Microwave Dielectric Properties of (Sr$_{1-x}$Bax)(Mg$_{1/3}$Nb$_{2/3}$)O$_3$ with SrWO$_4$ addition (SrWO$_4$가 첨가된 (Sr$_{1-x}$Bax)(Mg$_{1/3}$Nb$_{2/3}$)O$_3$의 마이크로파 유전특성)

  • Heo, Hoon;Park, Chan-Sik;Kim, Kyoung-Young;Byun, Jae-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.325-331
    • /
    • 1999
  • SrWO4가 첨가된 (Sr1-xBax)(Mg1/3Nb2/3)O3의 마이크로파 유전특성에 관하여 조사하였다. 관찰된 조성영역에서 Sr(Mg1/3Nb2/3)O3과 Ba(Mg1/3Nb2/3)O3은 (Sr1-xBax)(Mg1/3Nb2/3)O3고용체를 형성하고 SrWO4의 첨가는 고용체의 소결성을 향상시켜 소결온도 155$0^{\circ}C$에서 상대밀도 97% 이상을 얻었다. 소결한 시편의 EDS분석결과, SrWO4의 첨가량이 많은 시편에서 2차상이 존재하는 것을 알수 있었다. 순수한 Sr(Mg1/3Nb2/3)O3에 SrWO4를 0.01 mole첨가하여 1550~1$600^{\circ}C$에서 소결한 시편의 유전특성은 $\varepsilon$r 30, Q$\times$fo$\geq$55000,$ au$f -23 ppm/$^{\circ}C$이었다. 0.01 mole SrWO4가 첨가된 (Sr1-xBax)(Mg1/3Nb2/3)O3 고용체의 유전율과 온도계숙가 x에 따라 점차적으로 계속 증가하였고 Q$\times$fo는 x$\leq$0.25에서 x에 따라 감소하고 x$\geq$0.3에서 다시 증가하였다. (Sr0.65Ba0.35)(Mg1/3Nb2/3)O3+0.01SrWO4의 조성을 갖는 시편에서 $\varepsilon$r 34.4, Q$\times$fo$\geq$55000,$\tau$f 0 ppm/$^{\circ}C$이었다.

  • PDF

Evaluation of Contact Resistance between Carbon Fiber/Epoxy Composite Laminate and Printed Silver Electrode for Damage Monitoring (손상 감지 모니터링을 위한 탄소섬유 복합재료와 인쇄된 은 전극 사이의 접촉저항 평가)

  • Jeon, Eun-Beom;Takahashi, Kosuke;Kim, Hak-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.377-383
    • /
    • 2014
  • An addressable conducting network (ACN) makes it possible to monitor the condition of a structure using the electrical resistance between electrodes on the surface of a carbon fiber reinforced plastics (CFRP) structure. To improve the damage detection reliability of the ACN, the contact resistances between the electrodes and CFRP laminates needs to be minimized. In this study, silver nanoparticle electrodes were fabricated via printed electronics techniques on a CFRP composite. The contact resistance between the silver electrodes and CFRP were measured with respect to various fabrication conditions such as the sintering temperature of the silver nano-ink and the surface roughness of the CFRP laminates. The interfaces between the silver electrode and carbon fibers were observed using a scanning electron microscope (SEM). Based on this study, it was found that the lowest contact resistance of $0.3664{\Omega}$ could be achieved when the sintering temperature of the silver nano-ink and surface roughness were $120^{\circ}C$ and 0.230 a, respectively.

Low Temperature Sintering Mg-Zn Ferrites (Mg-Zn Ferrites의 저온소결화)

  • Kwon Oh-Heung
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.8-12
    • /
    • 2003
  • According to the recent trend to raise the horizontal scan frequency to increase the image refinement of the High Definition TV and High Resolution Display, material with low core loss is required for the ferrite core for deflection yoke, which is secured even in the high frequency range. liking notice of the influence on the fine structure of Mg-Zn ferrite by the chemical com position and process, low temperature sintering was proceeded. Cu was added to the low loss Mg-Zn system ferrite. After select-ing MgO, ZnO, $Fe_2$$O_3$, CuO, MgO was substituted for CuO while varying the composition ratio. Then the sample was sintered for 3 hours between $980~1350^{\circ}C$ Magnetic permeability, power consumption, shrinkage rate, core loss were measured. The start-ing temperature to test the shrinkage of the sample was nearby $900^{\circ}C$, it increased according to the substitution process of Cu, and the firing temperature was lowered about $-50~-75^{\circ}C$ alongside of the process.

Fabrication of Al2O3/Fe-Ni Nanocomposites by Pressureless Sintering and their Magnetic Properties (상압소결에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 자기적 특징)

  • Lee, Hong-Jae;Jeong, Young-Keun;NamKung, Seok;Oh, Sung-Tag;Lee, Jai-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.769-774
    • /
    • 2002
  • The powder mixture in which Fe-Ni alloy particles of 20 nm were homogeneously dispersed on $Al_2O_3$ particle surfaces was prepared by hydrogen reduction of $Al_2O_3$ and metal oxide powders. $Al_2O_3$/Fe-Ni nanocomposites fabricated by pressureless sintering were only composed of $Al_2O_3$ and ${gamma}$-Fe-Ni phases and achieved over 98% of the theoretical density at the sintering temperature above $1350^{\circ}C$. The highest strength and toughness of the composites were 574 MPa and 3.9 MP$a{\cdot}m1/2$, respectively. These values were about 20% higher than these of monolithic $Al_2O_3$ sintered at the same conditions. Nanocomposites showed ferromagnetic properties and coercive force was increased with decrease of the average particle size of dispersions.

A Study on the Electromagnetic Wave Absorption Properties by the Composition Ratio and Sintering Condition of NiCuZn Ferrite (NiCuZn 페라이트의 조성 및 소결조건에 따른 전자파흡수 특성에 관한 연구)

  • 이영구;박찬규;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.994-1000
    • /
    • 2001
  • With the development of electromagnetic communication technology and increased use of electromagnetic wave, the countermeasure of EMI(Electromagnetic Interference) becomes more important socially, and interest for the electromagnetic wave absorber has also increased. In this paper, we have studied characteristics of frequency dependency on complex permittivity and complex permeability according to the changes of composition rate and sintering temperature of NiCuZn ferrite also known as electromagnetic wave absorber and further looked into effect of electromagnetic wave absorption properties. From the measurement where the composition of $Fe_2O_3$ and ZnO of NiCuZn ferrite was fixed at 49 and 34 mol% respectively while composition of NiO and CuO has been varied at each test, we found out that Initial permeability and permittivity were high and the absorbing ability of electromagnetic wave recorded best with $loss tangent(=\mur"/\mur')$ displays more than 1 within the frequency band of 2MHz~9.5MHz when the composition ratio of NiO was ranged around 8.5~9.5 mol% and the sintering temperature was $1080^{\circ}C$.TEX>.

  • PDF

Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics (LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향)

  • Park, Yi-Hyun;Jung, Hun-Chae;Kim, Dong-Hyun;Yoon, Han-Ki;Kohyam, Akira
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

In-site Processing and Mechanical Properties of Ti/TiB Composites (반응생성에 의한 Ti/TiB 복합재료의 제조와 기계적 성질)

  • Jeong, Hui-Won;Lee, Yong-Tae
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.307-314
    • /
    • 1999
  • The effect of manufacturing variables, such as reactant powder$(TiB_2, B_4C)$, sintering temperature, and sintering time has been investigated on the microstructure and the mechanical properties of in-situ processed Ti/TiB composites. The mechanical properties were evaluated by measuring the compressive yield strength. The compressive yield strength of the in-situ processed composites was higher than that of the Ti-6AI-4V. The compressive yield strength of the composite made with TiE, reactant powder was higher than that of $B_4C$, mixed at the same volume fraction of reinforcement. It is because bonding nature between the matrix and the $TiB_2$, reactant powder was more strong than that of the other materials. It was proven by the examining the crack propagation path.

  • PDF

The Electrical Characteristics of the Grain Boundary in a $BaTiO_{3}$ PTC Thermistor ($BaTiO_{3}$ PTC 서미스터 입계의 전기적인 특성)

  • Kwon, Hyuk-Joo;Lee, Jae-Sung;Lee, Yong-Soo;Lee, Dong-Kee;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 1992
  • PTC thermistor has been fabricated with as-received $BaTiO_{3}$ powder and its electrical properties were investigated. The resistivity of the PTC thermistor was measured at $20^{\circ}C$ intervals from $20^{\circ}C$ to $200^{\circ}C$. The electrical characteristics of the PTC thermistor are determined by the ac complex impedance analysis. The average grain size measured with a scanning electron microscope increased from $3.8{\mu}m$ to $8.8{\mu}m$ with increasing sintering temperature between $1280^{\circ}C$ and $1400^{\circ}C$. The maximum resistivity jump was $4{\times}10^{5}$. The bulk resistivity of the thermistor sintered above $1340^{\circ}C$ decreased with increasing temperature of the measurement. The grain boundary resistance increased exponentially, the grain boundary capacitance decreased, and the built-in potential at the grain boundary increased with increasing temperature of the measurement. The charge densiy at the grain boundary increased with increasing temperature up to $110^{\circ}C$, which leveled off with further increase in measuring temperature.

  • PDF