• Title/Summary/Keyword: 소각재 재활용

Search Result 68, Processing Time 0.025 seconds

A Study on the Characteristics and Utilization of Ash from Sewage Sludge Incinerator (하수(下水)슬러지 소각재의 특성(特性) 평가(評價) 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.3-9
    • /
    • 2008
  • The measurement of physicochemical properties and chemical composition of SSA(sewage sludge ash) has been carried out and the preparation of lightweight material has also been performed using SSA for reuse as building or construction materials. For this aim, lightweight material has been prepared by forming the mixture of SSA, lightweight filler and inorganic binder followed by calcination at elevated temperature and characterized in terms of density and compressive strength. The pH of fly ash was found to be slightly alkaline, pH 8.69, due to the addition of caustic soda in order to neutralize the acidic gas while the pH of bottom ash was 6.48 Heavy metal leachability based on the standard leach test was also found to be below the detection limit for Cd, Cu, Pb, As and Cr of SSA. As far as the compressive strength of lightweight material was concerned, the compressive strength of lightweight material using fly ash was higher than that of lightweight material using bottom ash.

A Study on Recycling of Waste Polyethylene Film (폐폴리에틸렌 필름의 재활용에 관한 연구)

  • Lee, Hwan-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.182-188
    • /
    • 2008
  • The compounds of recycled polyethylene(PE) and fly-ashes were prepared. Polymers used were sorted PE from mixed plastics of household waste and Low Density Polyethylene(LDPE) and Linear Low Density Polyethylene(LLDPE) recycled from the scrap of packaging film plants. Fly-ashes were from the power plant and from the household waste incinerator. The tensile strength of recycled LDPE and LLDPE compounds decreased and the flexural modulus increased with greater amount of the power plant fly-ash. Anthracite fly-ash gave rise to slightly higher tensile and flexural strength of the LLDPE mixtures than bituminous coal fly-ash presumably due to higher content of unburned carbon. The incinerator fly-ash introduced to household waste PE enhanced both tensile strength and flexural modulus of the compounds. When LDPE and household waste PE were used together, the synergistic effect of incinerator fly-ash to household waste PE was offset by reduced crystallization of LDPE due to the filler particle. The compounds of household waste PE and incinerator fly-ash might be applied to structural materials for such as sewage pipe, which reduces the waste treatment cost and conserve the environment and resources.

A Study on Leaching Characteristics of the Heavy Metal in Melting Slag of Incinerator Ashes (소각재 용융슬래그의 중금속 용출특성에 관한 연구)

  • 한영수;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2001
  • Melting is one of the most effective treatments for stabilizing heavy metals and also creates high value by-products. In this study, authors evaluated the leaching characteristics of heavy metals in melting slag obtained by incinerator ashes. In order to evaluate the environmental compatibility of the recycled melting slag, the samples were analysed various leaching tests of heavy metals with raw incinerator ashes, melting slag and the construction materials recycled from melting slag. As the results : (1) The leaching concentrations of the melting slag were lower than those of the raw incinerator ashes in the experiment performed in accordance with Korea Standard Leaching Test (KSLT). (2) The heavy metal concentration of long term leaching test, which was conducted in various pH conditions, were under the standard level of regulation in KSLT. (3) The leaching concentration of mortar samples used for evaluating the feasibility of recycling the melting slag as construction materials also shows the suitable range for recycling. (4) The result of leaching test with the method of RG Min-StB 93, FGSV (Forschungsgesellschaft fur Stra$\beta$en- und Verkehrswesen) met the requirements in German.

  • PDF

소각재의 무해화 및 재활용에 관한 연구

  • 이동호;김성중;박현서
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.37-41
    • /
    • 2000
  • 폐기물 소각시 발생되는 각종 유해가스 및 비산회재(fly ash)는 후처리 설비에 의해 배출허용기준치 이하로 처리된 후 대기 중으로 방출되도록 환경 규제되고 있다. 그러나 포집된 비산회재(fly ash) 및 노하부 배출재(bottom ash) 내에는 미 연소된 상태로 배출된 유해성 유기물질(다이옥신, 퓨란류 등)과 중금속 성분이 함유되어 있어 이들 소각잔류물(incineration residues)을 안정화나 무해화 처리 없이 단순 매립할 경우 강우에 의해 소각잔류물 내의 유해성분이 침출됨에 따라 토양이나 지하수 등에 2차 환경오염을 일으키게 된다. (중략)

  • PDF

Characterization of Fly Ash Produced from a Sewage Sludge Incineration Facility in Korea (국내 하수슬러지 소각시설에서 발생되는 비산재의 특성 분석)

  • Kim, Seong-beom;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.96-99
    • /
    • 2016
  • This study characterized fly ash produced from a sewage sludge incineration facility in Korea to determine if the byproducts can be utilized. All the incinerated sewage sludge was from a city in Korea. To characterize fly ash and to determine if it can be utilized, pH, water contents, elemental components, particle size, surface morphology, heavy metal compositions, and others were analyzed. In average, pH was 6.2, and water contents was about 5%. T-N and $T-P_2O_5$ were 3% and 24.5%, respectively. Particle size averaged 836 nm; surface morphology did not exhibit any significant results. X-ray diffraction (XRD) analysis results revealed that major components of the fly ash were $P_2O_5$, CaO, MgO, $K_2O$. Composition of heavy metals by the Korea Standard Methods for Waste Quality did not exceed the criteria for specified wastes in Korea.

Stabilization of heavy metals of Municipal Solid Waste Incineration Bottom Ash by Carbonation (탄산화 반응에 의한 생활폐기물 소각 바닥재의 중금속 안정화)

  • Han, Gi-Chun;Um, Nam-Il;You, Gwang-Suk;Ahn, Ji-Whan
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.05a
    • /
    • pp.33-36
    • /
    • 2005
  • 생활폐기물을 소각한 후 발생되는 바닥재는 토목, 건설 분야에서 골재로서 활용 가치가 높으나, Cu, Pb 등 일부 중금속의 용출량이 환경기준치를 초과하여 바닥재의 재활용을 저해시키는 주요 요인으로 작용하고 있다. 본 연구에서는 바닥재의 중금속 용출을 저감시키기 위한 방법으로서 인위적인 탄산화에 의한 생활폐기물 소각 바닥재의 중금속 안정화 특성을 조사하였다. 4mesh를 기준으로 각 입단에 대해 고액비, 온도, $CO_2(g)$ 주입량에 따라 중금속 용출농도를 조사하였다. 중금속용출시험 결과 Pb, Cr, Cd, As는 미량 또는 불검출되었으며, Cu는 4mesh 이상에서 2.21mg/L, 4mesh이하에서 5.12mg/L로 4mesh이하에서 환경기준치를 초과하였다. 4mesh이하에 대해 탄산화 반응을 수행한 결과 $CO_2(g)$ 주입됨에 따라 pH는 초기 12.5에서 8까지 감소하였으며, Cu의 용출 농도는 pH 10에서 1.34mg/L까지 감소되었으며, pH 9-8에서는 불검출되어 탄산화 반응에 의해 바닥재의 환경적 안정성을 증진시킬 수 있음을 확인할 수 있었다.

  • PDF

A Study on the Characteristics and Utilization of Ash from ASR Incinerator (ASR 소각재의 이화학적 물성 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.32-39
    • /
    • 2007
  • The measurement of physicochemical properties of ASR incineration ash has been carried dot and the preparation of light-weight material has also been performed using ASR ash for recycling point of view as building or construction materials. For this aim, chemical composition, particle size distribution, and heavy metal leachability were examined for 2 bottom ashes and 4 fly ashes obtained from the domestic ASR incinerator. In the present work, attempt has been made to prepare the lightweight material using boiler ash as a raw material, which is prepared by forming the mixture of boiler ash, lightweisht filler and inorganic binder and followed by calcination at elevated temperature. As a result, the content of Cu in bottom ash was as high as about 3wt% so that the recovery of Cu from ash was required. The major compound of SDR #5 and Bag filter #6 was found to be $CaCl_2{\cdot}Ca(OH)_2{\cdot}H_2O\;and\;CaCl_2{\cdot}4H_2O$, respectively. It is thought that heavy metal teachability of lightweight material prepared with boiler ash was significantly decreased due to the encapsulation or stabilization of heavy metal compounds.

Ubiquitous Based Monitoring System for Efficient Data Management (효율적인 데이터관리를 위한 유비쿼터스 기반 모니터링 시스템)

  • Kim, Gui-Jung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.516-519
    • /
    • 2006
  • In this paper, we designed data monitoring system using RFID for efficient data management of cinder reuse process, and for construction of unified system utilizing exact data. We constructed database, thesarus retrieval model to manage this database, and designed RFID model for monitoring system. The construction of data monitoring system for stable cinder reuse is the efficient method to develop realtime and automatic process.

  • PDF

Development of Inorganic Binder Using Ash from Sewage Sludge Incinerator I (하수슬러지 소각재를 이용한 무기바인더 개발 I)

  • Lee, Hyun-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.843-850
    • /
    • 2014
  • This study investigated to recycle ash produced in the sewage sludge incinerator using reduction/stabilization. Nonsintering process was performed by binding cement, geobond and sand mixed with sewage sludge ash (SSA). Results showed that unconfined compressive strength could be obtained components of sewage sludge ash. it exceeded more than double score of the 22.54 Mpa ($229.7kg/cm^2$) Korean standard. chemical ingradients of the sewage sludge ash was mainly composed of $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO and others, which were similar to those of the each binders consisting cement and geobond. microstructure of solidified speceimen for the different admixture was related to the compressive strength according to SEM analysis. optimum mixing range of the sewage sludge ash to inorganic binder was found to be 10~40% which can widly safely regulate the confined compressive strength. This study revealed the sewage sludge ash can be partial replacement of the inorganic binder for recycling.