• Title/Summary/Keyword: 셀 확장 편향치

Search Result 2, Processing Time 0.018 seconds

Downlink Performance Analysis for Cell Range Expansion Bias in Heterogeneous Mobile Communication Networks (이종 이동통신 네트워크에서 셀 확장 편향치에 따른 하향 링크 성능 분석)

  • Ban, Tae-Won;Jung, Bang Chul;Jo, Jung-Yeon;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2806-2811
    • /
    • 2013
  • New technologies such as multi-antenna and small cell were proposed as key technology for the next generation mobile system to cope with the explosively increasing mobile data traffic. In particular, heterogeneous mobile communication network which can improve spatial reuse factor by exploiting macro and small cells simultaneously is attracting attention. However, the heterogeneous network has a problem that the utilization of small cells becomes low because the transmit power of macro base stations is much higher than that of small base stations and then the probability that mobile stations are attached to the macro base stations becomes high. This problem is dominant in uplink. The concept of cell range expansion bias to mitigate the problem was proposed by 3GPP and the corresponding standardization is in progress. In this paper, we analyze the downlink performance of the heterogeneous mobile communication network based on a system level simulator with the cell range expansion bias in terms of average cell spectral efficiency.

An Adaptive Cell Selection Scheme for Ultra Dense Heterogeneous Mobile Communication Networks (초밀집 이종 이동 통신망을 위한 적응형 셀 선택 기법)

  • Jo, Jung-Yeon;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1307-1312
    • /
    • 2015
  • As smart-phones become popular, mobile data traffic has been dramatically increasing and intensive researches on the next-generation mobile communication network is in progress to meet the increasing demand for mobile data traffic. In particular, heterogeneous network (HetNet) is attracting much interest because it can significantly enhance the network capacity by increasing the spatial reuse with macro and small cells. In the HetNet, we have several problems such as load imbalance and interference because of the difference in transmit power between macro and small cells and cell range expansion (CRE) can mitigate the problems. In this paper, we propose a new cell selection scheme with adaptive cell range expansion bias (CREB) for ultra dense HetNet and we analyze the performance of the proposed scheme in terms of average cell transmission rate through system-level simulations and compare it with those of other schemes.