• Title/Summary/Keyword: 셀룰러

Search Result 592, Processing Time 0.017 seconds

Development of Homogenization Data-based Transfer Learning Framework to Predict Effective Mechanical Properties and Thermal Conductivity of Foam Structures (폼 구조의 유효 기계적 물성 및 열전도율 예측을 위한 균질화 데이터 기반 전이학습 프레임워크의 개발)

  • Wonjoo Lee;Suhan Kim;Hyun Jong Sim;Ju Ho Lee;Byeong Hyeok An;Yu Jung Kim;Sang Yung Jeong;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.205-210
    • /
    • 2023
  • In this study, we developed a transfer learning framework based on homogenization data for efficient prediction of the effective mechanical properties and thermal conductivity of cellular foam structures. Mean-field homogenization (MFH) based on the Eshelby's tensor allows for efficient prediction of properties in porous structures including ellipsoidal inclusions, but accurately predicting the properties of cellular foam structures is challenging. On the other hand, finite element homogenization (FEH) is more accurate but comes with relatively high computational cost. In this paper, we propose a data-driven transfer learning framework that combines the advantages of mean-field homogenization and finite element homogenization. Specifically, we generate a large amount of mean-field homogenization data to build a pre-trained model, and then fine-tune it using a relatively small amount of finite element homogenization data. Numerical examples were conducted to validate the proposed framework and verify the accuracy of the analysis. The results of this study are expected to be applicable to the analysis of materials with various foam structures.

Hybrid Offloading Technique Based on Auction Theory and Reinforcement Learning in MEC Industrial IoT Environment (MEC 산업용 IoT 환경에서 경매 이론과 강화 학습 기반의 하이브리드 오프로딩 기법)

  • Bae Hyeon Ji;Kim Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.9
    • /
    • pp.263-272
    • /
    • 2023
  • Industrial Internet of Things (IIoT) is an important factor in increasing production efficiency in industrial sectors, along with data collection, exchange and analysis through large-scale connectivity. However, as traffic increases explosively due to the recent spread of IIoT, an allocation method that can efficiently process traffic is required. In this thesis, I propose a two-stage task offloading decision method to increase successful task throughput in an IIoT environment. In addition, I consider a hybrid offloading system that can offload compute-intensive tasks to a mobile edge computing server via a cellular link or to a nearby IIoT device via a Device to Device (D2D) link. The first stage is to design an incentive mechanism to prevent devices participating in task offloading from acting selfishly and giving difficulties in improving task throughput. Among the mechanism design, McAfee's mechanism is used to control the selfish behavior of the devices that process the task and to increase the overall system throughput. After that, in stage 2, I propose a multi-armed bandit (MAB)-based task offloading decision method in a non-stationary environment by considering the irregular movement of the IIoT device. Experimental results show that the proposed method can obtain better performance in terms of overall system throughput, communication failure rate and regret compared to other existing methods.