• Title/Summary/Keyword: 셀룰러

Search Result 592, Processing Time 0.027 seconds

Prediction of vehicle dynamics-based aperiodic message generation times in cellular V2X communication (셀룰러 V2X 통신에서 차량역학 기반 비주기적 메시지 발생시점 예측)

  • Seon, Hyeon-Ji;Lee, Ho-Jeong;Kim, Hyogon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.90-93
    • /
    • 2022
  • 좁은 ITS(Intelligent Transportation Systems) 대역에서는 채널 혼잡을 피하는 것이 필수적이다. 눈에 띄는 변화가 있을 때만 차량 운동을 보고하는 것은 대역폭 사용을 줄이기 위한 표준화된 접근 방식이다. 그러나 셀룰러 V2X(Vehicle-to-Everything) 통신에서 주기적인 비콘의 빈번한 누락으로 인한 비주기성은 자원 낭비와 자원 스케쥴링의 안정성 문제를 제기한다. 이에 대해 이 논문에서는 자동차의 운동이 물리적 특성에 의해 제약을 받기 때문에 딥러닝 기반 체계로 대부분의 메시지 생성 시간을 정확하게 예측할 수 있다는 것을 보여준다. 제안된 예측 방법은 통상적인 도로주행 시 94.9%의 정확도를 달성한다.

A Hand-off Technique for Cellular Networks Using Game Theory (셀룰라 네트워크에서 게임 이론을 이용한 핸드오프 기법)

  • Hong, Jin-Dae;Lee, Sin-Kyu;Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2399-2404
    • /
    • 2009
  • In cellular network systems one of the most significant quality metrics to measure quality of performance is the average number of call drops in a system. It ensures that the active calls in the system are successfully completed without being dropped in the mid communication for ultimate customer satisfaction. Hand-off mechanism increases cellular system reliability by seamless continuation of active calls by transferring active calls from one base station to another. In this paper, we study and propose a simple hand-off mechanism using game theory. We conclude that using the simple QoS utility function proposed in this paper, our optimal deterministic hand-off strategy is to transfer the active calls to the base station with greater signal-to-interference ratio (SIR) and greater number of available channels.

A Performance Improvement of Resource Prediction Method Based on Wiener Model in Wireless Cellular Networks (무선 셀룰러 망에서 위너모델에 기초한 자원예측 방법의 성능개선)

  • Lee Jin-Yi
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.69-76
    • /
    • 2005
  • To effectively use limited resources in wireless cellular networks it is necessary to predict exactly the amount of resources required by handoff calls at a future time. In this paper we propose a method which predicts the amount of resources needed by handoff calls more accurately than the existing method based on Wiener processes. The existing method uses the current demands to predict future demands. Although this method is much simpler than using traffic information from neighbor cells, its prediction error increases as time elapses, leading to waste of wireless resources. By using an exponential parameter to decrease the magnitude of error over time, we show in simulation how to outperform the existing method in resource utilization as well as in prediction of resource demands.

A Tx-Rx Beam Tracking Technique for Cellular Communication Systems with a mmWave Link (밀리미터 웨이브 링크를 갖는 셀룰러 통신 시스템을 위한 송·수신 빔 추적 기법)

  • Kim, Kyu Seok;Lim, Tae Sung;Choi, Joo Hyung;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1327-1337
    • /
    • 2014
  • In cellular communication systems employing millimeter wave (mmWave) bands for a link, a large amount of training time and network resources will be required to find a serving BS with the best transmit and receive (Tx-Rx) beam pair if downlink control signals are used. In this paper, a tracking technique for OFDM-based cellular communication systems with a mmWave link, where an analog beamforer is used at the mobile station (MS) and a digital beamformer is used at the BS, is proposed using an uplink signal. A technique to select a serving BS with the best beam pair is described using the uplink preamble sequence based on Zadoff-Chu sequence and a metrics which can be used to identify parameters such as beam ID (BID), MS ID (MID), and direction-of-arrival (DoA). The effectiveness of the proposed technique is verified via simulation with the spatial channel model (SCM) for a moving MS in mmWave cellular systems.

An Efficient Inter-Cell Interference Mitigation Scheme for Proximity Service in Cellular Networks (셀룰러 망에서 Proximity Service를 위한 효율적인 셀 간 간섭 완화 방안)

  • Kim, Cha-Ju;Min, Sang-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.100-113
    • /
    • 2018
  • The Proximity Service, which is one of the most popular network capacity improvement methods, uses the frequency reuse in order to increase the frequency efficiency. As a result, inter-cell interference between cellular and proximity service users occurs at a cell edge. In this paper, we proposed a mitigation scheme for inter-cell interference, where we suggested a new function of and eNB with ProSe function exchanging information about ProSe parameters and ProSe user equipment with neighboring cells via the X2 interface. As the first step, the resource which did not cause the inter-cell interference problem were pre-allocated through the frequency sensing in the ProSe direct discovery. As the next step, the inter-cell interference problem was solved by reallocating appropriate resources based on the ProSe application code, the ProSe application QoS, the ProSe application ID and validity timer in ProSe direct communication.

Reconfiguration Problems in VLSI and WSI Cellular Arrays (초대규모 집적 또는 웨이퍼 규모 집적을 이용한 셀룰러 병렬 처리기의 재구현)

  • 한재일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1553-1571
    • /
    • 1993
  • A significant amount of research has focused on the development of highly parallel architectures to obtain far more computational power than conventional computer systems. These architectures usually comprise of a large number of processors communicating through an interconnection network. The VLSI (Very Large Scale Integration) and WSI (Wafer Scale Integration) cellular arrays form one important class of those parallel architectures, and consist of a large number of simple processing cells, all on a single chip or wafer, each interconnected only to its neighbors. This paper studies three fundamental issues in these arrays : fault-tolerant reconfiguration. functional reconfiguration, and their integration. The paper examines conventional techniques, and gives an in-depth discussion about fault-tolerant reconfiguration and functional reconfiguration, presenting testing control strategy, configuration control strategy, steps required f4r each reconfiguration, and other relevant topics. The issue of integrating fault tolerant reconfiguration and functional reconfiguration has been addressed only recently. To tackle that problem, the paper identifies the relation between fault tolerant reconfiguration and functional reconfiguration, and discusses appropriate testing and configuration control strategy for integrated reconfiguration on VLSI and WSI cellular arrays.

  • PDF