• Title/Summary/Keyword: 센서 측정 거리

Search Result 598, Processing Time 0.029 seconds

Evaluation of Accident Prevention Performance of Vision and Radar Sensor for Major Accident Scenarios in Intersection (교차로 주요 사고 시나리오에 대한 비전 센서와 레이더 센서의 사고 예방성능 평가)

  • Kim, Yeeun;Tak, Sehyun;Kim, Jeongyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.96-108
    • /
    • 2017
  • The current collision warning and avoidance system(CWAS) is one of the representative Advanced Driver Assistance Systems (ADAS) that significantly contributes to improve the safety performance of a vehicle and mitigate the severity of an accident. However, current CWAS mainly have focused on preventing a forward collision in an uninterrupted flow, and the prevention performance near intersections and other various types of accident scenarios are not extensively studied. In this paper, the safety performance of Vision-Sensor (VS) and Radar-Sensor(RS) - based collision warning systems are evaluated near an intersection area with the data from Naturalistic Driving Study(NDS) of Second Strategic Highway Research Program(SHRP2). Based on the VS and RS data, we newly derived sixteen vehicle-to-vehicle accident scenarios near an intersection. Then, we evaluated the detection performance of VS and RS within the derived scenarios. The results showed that VS and RS can prevent an accident in limited situations due to their restrained field-of-view. With an accident prevention rate of 0.7, VS and RS can prevent an accident in five and four scenarios, respectively. For an efficient accident prevention, a different system that can detect vehicles'movement with longer range than VS and RS is required as well as an algorithm that can predict the future movement of other vehicles. In order to further improve the safety performance of CWAS near intersection areas, a communication-based collision warning system such as integration algorithm of data from infrastructure and in-vehicle sensor shall be developed.

Development of System for Calculating Carbon Storage Amount of Roadside Tree Using Mobile Mapping System (멀티센서 융합 측위 시스템을 이용한 가로수 탄소저장량 산정 시스템 개발)

  • Kim, Jeong-Seob;Yang, Keum-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.536-543
    • /
    • 2017
  • This study developed a new methodology to evaluate the carbon storage using a Mobile Mapping System according to the life cycle of street trees. The system for calculating the carbon storage of a roadside tree using the MMS developed in this study consisted of a database, memory, processor, user interface, and communication module. The carbon storage was calculated for 261 trees in the Cheonan-Asan New Town (distance: 2.1 km, area: $283,698m^2$). The average biomass and carbon storage of Metasequoia glyptostroboides were highest at 34.5 kg and 17.3 kg C and Chionanthus retusa were lowest at 19.5 kg and 9.8 kg C, respectively. The total biomass and total carbon storage of Ginkgo biloba were highest at 5028.8 kg and 17.3 kg C and Chionanthus retusa were lowest at 780.7 kg and 390.3 kg C, respectively. Based on the roadside tree database, the amount of carbon storage in a given area was converted to Google format and visualized in 3D by GIS analysis.

The Application of CO2 and Hydrometer Sensor for Development of Real Time Measuring Method on CO2 Emission of Construction Equipment (건설장비의 CO2배출량 실시간 측정방법 개발을 위한 CO2 및 유속센서의 활용)

  • Jang, Won-Suk;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.78-86
    • /
    • 2013
  • The researches for reduce $CO_2$ are going along animatedly in hole industry area. In construction area, the researches to minimize $CO_2$ emission are progressing variously. The researches to minimize $CO_2$ emission based on $CO_2$ emission. The method measuring $CO_2$ emission are using $CO_2$ emission coefficient on fuel consumption, LCA and an inter-industry relation table. Especially, the methods using the carbon emission coefficient based on fuel consumption are 3 types(Tier1~Tier3) of IPCC. Present, the most using method(Tier1) is using the fuel consumption and the carbon emission coefficient. But because this method do not effect each vehicle distance and driving environment, we can't calculate right $CO_2$ emission. Especially construction project's $CO_2$ emission could be different by project's characteristic. However, we can't apply these difference with present methods. So we need methodology calculating $CO_2$ emission by applying personal project's characteristic and these methodology's most important things is directly measuring $CO_2$ emission of construction equipment which use energy. The object of this study is to develop the $CO_2$ emission calculation methodology which occur in construction process, is to suggest ways to measure in real time $CO_2$ emission from construction equipment.

Analysis of a CubeSat Magnetic Cleanliness for the Space Science Mission (우주과학임무를 위한 큐브위성 자기장 청결도 분석)

  • Jo, Hye Jeong;Jin, Ho;Park, Hyeonhu;Kim, Khan-Hyuk;Jang, Yunho;Jo, Woohyun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • CubeSat is a satellite platform that is widely used not only for earth observation but also for space exploration. CubeSat is also used in magnetic field investigation missions to observe space physics phenomena with various shape configurations of magnetometer instrument unit. In case of magnetic field measurement, the magnetometer instrument should be far away from the satellite body to minimize the magnetic disturbances from satellites. But the accommodation setting of the magnetometer instrument is limited due to the volume constraint of small satellites like a CubeSat. In this paper, we investigated that the magnetic field interference generated by the cube satellite was analyzed how much it can affect the reliability of magnetic field measurement. For this analysis, we used a reaction wheel and Torque rods which have relatively high-power consumption as major noise sources. The magnetic dipole moment of these parts was derived by the data sheet of the manufacturer. We have been confirmed that the effect of the residual moment of the magnetic torque located in the middle of the 3U cube satellite can reach 36,000 nT from the outermost end of the body of the CubeSat in a space without an external magnetic field. In the case of accurate magnetic field measurements of less than 1 nT, we found that the magnetometer should be at least 0.6 m away from the CubeSat body. We expect that this analysis method will be an important role of a magnetic cleanliness analysis when designing a CubeSat to carry out a magnetic field measurement.

Development of a Ranging Inspection Technique in a Sodium-cooled Fast Reactor Using a Plate-type Ultrasonic Waveguide Sensor (판형 웨이브가이드 초음파 센서를 이용한 소듐냉각고속로 원격주사 검사기법 개발)

  • Kim, Hoe Woong;Kim, Sang Hwal;Han, Jae Won;Joo, Young Sang;Park, Chang Gyu;Kim, Jong Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2015
  • In a sodium-cooled fast reactor, which is a Generation-IV reactor, refueling is conducted by rotating, but not opening, the reactor head to prevent a reaction between the sodium, water and air. Therefore, an inspection technique that checks for the presence of any obstacles between the reactor core and the upper internal structure, which could disturb the rotation of the reactor head, is essential prior to the refueling of a sodium-cooled fast reactor. To this end, an ultrasound-based inspection technique should be employed because the opacity of the sodium prevents conventional optical inspection techniques from being applied to the monitoring of obstacles. In this study, a ranging inspection technique using a plate-type ultrasonic waveguide sensor was developed to monitor the presence of any obstacles between the reactor core and the upper internal structure in the opaque sodium. Because the waveguide sensor installs an ultrasonic transducer in a relatively cold region and transmits the ultrasonic waves into the hot radioactive liquid sodium through a long waveguide, it offers better reliability and is less susceptible to thermal or radiation damage. A 10 m horizontal beam waveguide sensor capable of radiating an ultrasonic wave horizontally was developed, and beam profile measurements and basic experiments were carried out to investigate the characteristics of the developed sensor. The beam width and propagation distance of the ultrasonic wave radiated from the sensor were assessed based on the experimental results. Finally, a feasibility test using cylindrical targets (corresponding to the shape of possible obstacles) was also conducted to evaluate the applicability of the developed ranging inspection technique to actual applications.

Ambient Display: Picture Navigation Based on User Movement (앰비언트 디스플레이: 사용자 위치 이동 기반의 사진 내비게이션)

  • Yoon, Yeo-Jin;Ryu, Han-Sol;Park, Chan-Yong;Park, Soo-Jun;Choi, Soo-Mi
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.27-34
    • /
    • 2007
  • In ubiquitous computing, there is increasing demand for ubiquitous displays that react to a user's actions. We propose a method of navigating pictures on an ambient display using implicit interactions. The ambient display can identify the user and measure how far away they are using an RFID reader and ultrasonic sensors. When the user is a long way from the display, it acts as a digital picture and does not attract attention. When the user comes within an appropriate range for interaction, the display shows pictures that are related to the user and provides quasi-3D navigation using the TIP(tour into the picture) method. In addition, menus can be manipulated directly on a touch-screen or remotely using an air mouse. In an emergency, LEDs around the display flash to alert the user.

  • PDF

Image Restoration of Remote Sensing High Resolution Imagery Using Point-Jacobian Iterative MAP Estimation (Point-Jacobian 반복 MAP 추정을 이용한 고해상도 영상복원)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.817-827
    • /
    • 2014
  • In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. The degradation results in noise and blurring which badly affect identification and extraction of useful information in image data. This study proposes a maximum a posteriori (MAP) estimation using Point-Jacobian iteration to restore a degraded image. The proposed method assumes a Gaussian additive noise and Markov random field of spatial continuity. The proposed method employs a neighbor window of spoke type which is composed of 8 line windows at the 8 directions, and a boundary adjacency measure of Mahalanobis square distance between center and neighbor pixels. For the evaluation of the proposed method, a pixel-wise classification was used for simulation data using various patterns similar to the structure exhibited in high resolution imagery and an unsupervised segmentation for the remotely-sensed image data of 1 mspatial resolution observed over the north area of Anyang in Korean peninsula. The experimental results imply that it can improve analytical accuracy in the application of remote sensing high resolution imagery.

Smooth Haptic Interaction Methods in Augmented Reality Haptics (증강 현실에서의 부드러운 촉각 상호작용 방법)

  • Lee, Beom-Chan;Hwang, Sun-Uk;Kim, Hyun-Gon;Lee, Yong-Gu;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2072-2072
    • /
    • 2009
  • 최근 연구들에서, 증강 현실(Augmented Reality; AR) 환경에서의 촉각 상호작용에 대한 가능성이 논의되었다. 비젼 기반의 트래킹을 기초로 한 증강 현실 기술은 미리 정의된 2차원 마커(marker)를 이용하여, 카메라로부터 획득된 실시간 영상 위에 가상 물체를 증강한다. 그러나, 카메라로부터 획득된 데이터는 몇몇 오차 요인들, 예를 들어 마커의 위치를 인식하는데 나타나는 오차, 카메라 안에 존재하는 센서 잡음 등으로 인해서 마커 잡음(마커를 인식하면서 나타나는 잡음)이 불가결하게 발생하게 된다. 이러한 이유로 인해서, 사용자가 한 손에는 마커를, 다른 한 손으로는 촉감 장치를 이용하여, 마커에 증강된 물체를 만질 때, 마커 잡음은 힘의 떨림(force trembling)을 발생시킨다. 심지어, 이러한 현상은 정지된 마커에 증강된, 마커가 움직이지 않는 상황에서도 발생한다. 게다가, 마커 위에 증강된 물체가 약간 빠른 속도로 이동하게 될 경우, 측정된 이동 거리는 연속적인 프레임(frame)들 간의 불연속적일 수 있다. 만약 사용자가, 대략 30Hz로 위치와 방향이 갱신되는 가상물체를 촉각적으로 상호작용하려 한다면, 계산되는 반력은 급작스런 힘의 변화를 생성하게 될 수도 있다. 이러한 현상을 극복하기 위해서, 마커 잡음을 최소화하기 위해서 정적 임계값(constant threshold)을 이용할 뿐만 아니라, 보간법을 같이 사용한 방법이 있었다. 하지만, 이러한 방법은 정적 임계값을 이용하고, 영상 프레임 갱신 속도와(video frame rate)와 촉각 프레임 갱신 속도가 일정하다는 가정을 사용하였기 때문에, 여전히 힘의 불연속적인 발생이 나타난다. 따라서, 이 논문에서는 두 가지 방법을 이용하여 증강 현실 내에서, 발생할 수 있는 힘의 불연속적인 변화를 보정하는 두 가지 방법, 잡음 제거를 위한 확장된 칼만 필터(Extend Kalman Filter)와 영상과 촉각 갱신 속도 차이에 따른 갑작스런 힘의 변화를 제거하기 위한 적응적 외삽법(Adaptive Extrapolation method)을 제안한다.

  • PDF

Internal Defect Position Analysis of a Multi-Layer Chip Using Lock-in Infrared Microscopy (위상잠금 적외선 현미경 관찰법을 이용한 다층구조 칩의 내부결함 위치 분석)

  • Kim, Seon-Jin;Lee, Kye-Sung;Hur, Hwan;Lee, Haksun;Bae, Hyun-Cheol;Choi, Kwang-Seong;Kim, Ghiseok;Kim, Geon-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.200-205
    • /
    • 2015
  • An ultra-precise infrared microscope consisting of a high-resolution infrared objective lens and infrared sensors is utilized successfully to obtain location information on the plane and depth of local heat sources causing defects in a semiconductor device. In this study, multi-layer semiconductor chips are analyzed for the positional information of heat sources by using a lock-in infrared microscope. Optimal conditions such as focal position, integration time, current and lock-in frequency for measuring the accurate depth of the heat sources are studied by lock-in thermography. The location indicated by the results of the depth estimate, according to the change in distance between the infrared objective lens and the specimen is analyzed under these optimal conditions.

Development of Wave Monitoring System using Precise Point Positioning (PPP 기반 항법 알고리즘을 이용한 파고 계측시스템 설계 및 구현)

  • Song, Se Phil;Cho, Deuk Jae;Park, Sul Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1055-1062
    • /
    • 2015
  • A GPS based wave height meter system is proposed in this paper. The proposed system uses a dual-frequency measurements, a precise GPS satellite information and a PPP-based navigation algorithm to estimate the position with high accuracy. This method does not need to receive corrections from the reference stations. Therefore, unlike RTK based wave meter, regardless of the distance to the reference stations, it is possible to estimate position with high accuracy. This system is very simple and accurate system, but accelerometer-based system requires the other sensors such as GPS. Because position error is accumulated in the accelerometer system and must be removed periodically for high accuracy. In order to get the measurements and test the proposed wave height meter system, a buoy equipped with the test platform is installed on the sea near by Jukbyeon habor in Uljin, Korea. Then, to evaluate the performance, compares built-in commercial wave height meter with proposed system.