• 제목/요약/키워드: 센서모델

검색결과 1,972건 처리시간 0.028초

농림위성용 GCP 칩 매칭 성능 향상을 위한 위성영상 공간해상도 결정 (Determination of Spatial Resolution to Improve GCP Chip Matching Performance for CAS-4)

  • 이유진;김태정
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1517-1526
    • /
    • 2021
  • 최근 국내외에서 많은 지구관측위성들이 발사됨에 따라서 위성영상의 활용 분야가 넓어지고 있고 이에 따라서 위성영상의 기하정확도 향상을 위한 연구가 활발히 수행되고 있다. 본 논문은 2025년에 발사예정인 5 m 해상도 영상을 촬영할 수 있는 농림위성을 위한 자동기준점 추출 가능성을 파악하기 위해서 수행되었다. 특히 본 연구에서는 국토위성용으로 구축된 25 cm 해상도의 지상기준점 Chip을 농림위성영상에 사용할 수 있는지를 검토하고 농림위성영상용 지상기준점 추출 시 정합 성능 향상을 위한 적절한 공간해상도가 있는지를 검토하고자 한다. 실제 실험은 농림위성영상과 유사한 사양을 가진 RapidEye 위성영상을 활용하여 연구를 수행하였다. 먼저, 5 m 해상도의 원본 RapidEye 영상을 3배~7배로 분할하여 여러 해상도를 가진 영상으로 만들고, 해상도를 가지는 지상기준점 Chip은 크기를 축소하여 위성영상의 해상도에 맞게 조절하였다. 각각의 해상도를 가지는 위성영상과 지상기준점 Chip을 매칭하고 이 결과로 수립된 정밀센서모델의 정확도를 분석하였다. 분석결과 5 m의 원본 해상도에서 정합하는 것보다 위성영상의 해상도를 높여서 정합하는 것이 개선된 정확도를 보여주었다. 특히, 원본 영상을 1.25~1.67 m 해상도로 분할하여 지상기준점 Chip과 정합 할 경우 평균 약 2.74 m 내외의 위치정확도를 얻을 수 있었다. 본 연구결과가 향후 농림위성영상의 자동기준점 추출 및 정밀정사영상 생산에 활용될 수 있을 것으로 기대한다.

위성 자료를 이용한 지표면 흡수단파복사 산출 알고리즘들의 비교 분석 (Comparative Analysis of Algorithm for Calculation of Absorbed Shortwave Radiation at Surface Using Satellite Date)

  • 박혜인;이규태;조일성;김부요
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.925-939
    • /
    • 2018
  • 지표면 흡수단파복사(Absorbed Shortwave Radiation, ASR)는 대기와 육지 및 해양 사이의 에너지 수지 분석을 위한 필수 요소이다. 이 연구에서는 천리안위성 2A호(GEO-KOMPSAT-2A; GK-2A)에 적용하기 위하여 복사 모델과 지표면 알베도 자료를 이용하여 지표면 흡수단파복사를 산출(GWNU 방법)하였고, 그 결과는 기준 자료로 선정한 CERES (Clouds and the Earth's Radiant Energy System) 위성 센서 및 지상 관측 자료와 비교하였다. 또한 이 연구 결과(GWNU 방법)는 미국 정지궤도위성 GOES-R의 ABI (Advanced Baseline Imager)에 의한 물리적 및 통계적 방법 그리고 Li et al.(1993) 및 Kim and Jeong (2016)의 회귀 방정식 방법들과 비교하였으며, 그 결과 GWNU 방법에 의하여 계산된 지표면 흡수단파복사는 다른 방법들에 의한 값보다 정확 하였다. 그러나 GWNU 방법을 활용하여 지표면 흡수단파복사를 산출할 때 계산 시간과 지표면 알베도 자료의 정확성 문제가 발생될 경우 위에 제시된 경험적 방법들이 GWNU 방법과 함께 사용되어야 할 것이다.

드론 초분광 영상 활용을 위한 절대적 대기보정 방법의 비교 분석 (A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery)

  • 전의익;김경우;조성빈;김성학
    • 대한원격탐사학회지
    • /
    • 제35권2호
    • /
    • pp.203-215
    • /
    • 2019
  • 드론에 탑재가 가능한 초분광 센서가 개발됨에 따라 높은 공간해상도와 분광해상도를 가지는 초분광 영상의 획득이 가능해졌다. 드론 초분광 영상은 저고도에서 획득되므로 대기보정의 중요성이 낮아졌으나, 초분광 영상의 활용하여 지표물의 농도 추정 등의 연구를 위해서는 원자료에서 정규화된 분광반사율로 변환 과정에 관한 연구는 필수적으로 이루어져야 한다. 이에 따라 본 연구에서는 드론 초분광 영상에 대리복사보정과 대기복사전달모델 기반의 대기보정 알고리즘을 적용하고 결과를 비교분석하였다. 대리복사보정에는 균일한 물질로 이루어진 타프의 분광반사율을 이용하여 경험적 선형보정 기법을 적용하였다. 대기보정 알고리즘은 항공 초분광 영상의 대기보정에 널리 사용되는 Modtran-5 기반의 ATCOR-4를 사용하였다. 기준 반사율과의 상관도와 차이의 RMSE를 분석한 결과, 단일 시기의 초분광 영상에서 타프를 이용한 대리보정이 가장 정확도가 높았지만, 초분광 영상의 활용 목적에 따라 대기보정 알고리즘의 활용이 가능하다는 것을 확인할 수 있었다. 향후 다중 시기의 영상에 대해 추가적인 대리보정 실험을 통해 정규화된 분광반사율 변환 과정이 이루어진다면 드론 초분광 영상을 활용한 정밀한 분석이 가능할 것으로 사료된다.

외부 환경에 강인한 딥러닝 기반 손 제스처 인식 (A Deep Learning-based Hand Gesture Recognition Robust to External Environments)

  • 오동한;이병희;김태영
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권5호
    • /
    • pp.31-39
    • /
    • 2018
  • 최근 딥러닝을 기반으로 사용자의 손 제스처를 인식하여 가상현실 환경에서 사용자 친화적 인터페이스를 제공하기 위한 연구가 활발히 진행되고 있다. 그러나 대부분 연구들은 손 정보를 얻기 위하여 별도 센서를 사용하거나 효율적인 학습을 위하여 전처리 과정을 거친다. 또한 조명의 변화나 손 일부가 가려지는 등과 같은 외부환경의 변화를 고려하지 못하고 있다. 본 논문은 일반 웹캠에서 얻어진 RGB 영상에서 별도의 전처리 과정없이 외부 환경에 강인한 딥러닝 기반 손 제스처 인식 방법을 제안한다. 딥러닝 모델로 VGGNet과 GoogLeNet 구조를 개선하고, 각 구조의 성능을 비교한다. 조명이 어둡거나 손 일부가 가려지거나 시야에서 일부 벗어난 손 영상들이 포함된 데이터로 실험한 결과 본 연구에서 제시한 VGGNet과 GoogLeNet 구조는 각각 93.88%와 93.75%의 인식률을 보였고 메모리와 속도 측면에서 GoogLeNet이 VGGNet 보다 메모리를 약 3배 적게 사용하면서 처리속도는 10배 이상 우수함을 알 수 있었다. 본 연구의 결과는 실시간 처리가 가능하여 가상현실 환경에서 게임, 교육, 의료 등 다양한 분야에서 손 제스처 인터페이스로 활용될 수 있다.

순환신경망을 이용한 자기장 기반 실내측위시스템 (Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model)

  • 배한준;최린;박병준
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.57-65
    • /
    • 2018
  • BLE 또는 Wi-Fi 기반 지문인식과 같은 기존의 RF 신호 기반 실내 위치인식 기술은 RF 신호의 불안정한 수신 신호 세기로 인해 소규모 실내 환경에서도 작지 않은 오차를 발생시키며 공항, 백화점과 같은 대규모 실내 환경에 적용하기가 어렵다. 이 논문에서는 RF 신호보다 안정적인 신호 강도를 갖는 자기장 신호를 이용한 실내측위 시스템을 제안한다. 유사한 자기장 값이 같은 실내 공간에 여럿 존재하지만, 사용자의 이동이 계속됨에 따라 자기장 신호는 고유 시퀀스를 가지게 된다. 본 논문에서는 시간에 따라 변화하는 센서 데이터 시퀀스를 인식하는 데 효과적인 순환 신경망 (Recurrent neural network, RNN)이라 불리는 심층 신경망 모델을 사용하여 사용자의 현재 위치와 이동 경로를 추적한다. 제안된 신경망 기반의 지자기 실내측위시스템의 평가를 위해 약 $94m{\times}26$ 크기의 교내 테스트베드에서 자기장 맵을 구축하고 자기장맵으로부터 추출한 다양한 이동 경로와 위치 정보를 이용하여 RNN을 학습한 결과, 테스트베드에서 제안된 시스템은 평균 1.20 미터의 테스트 측위 오차를 달성할 수 있었다.

VIIRS와 MODIS 자료를 활용한 중분류 토지이용별 알베도 분석 (Analysis of Albedo by Level-2 Land Use Using VIIRS and MODIS Data)

  • 이용관;정지훈;장원진;김진욱;김성준
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1385-1394
    • /
    • 2022
  • 본 연구에서는 MODerate resolution Imaging Spectroradiometer (MODIS) 자료를 활용하여 20년(2002-2021)의 중분류 토지피복별 알베도 변화를 분석하고, Visible Infrared Imaging Radiometer Suite (VIIRS)의 10년(2012-2021) 자료를 활용해 MODIS 자료와의 차이를 분석하였다. MODIS와 VIIRS의 알베도 자료는 Bidirectional Reflectance Distribution Function (BRDF) 모델을 활용해 생산된 Sinusoidal Tile Grid 기반 500 m 공간해상도의 일단위 알베도 자료 MCD43A3와 VNP43IA3를 우리나라 범위에 대하여 구축하였다. Python 3.9 기반으로 작성된 코드를 활용하여 Reprojection을 하였으며, Resampling method는 Nearest neighbor를 적용하였다. 알베도 분석에는 단파 영역(Shortwave)의 White sky albedo와 Black sky albedo를 활용하였다. MODIS 자료를 활용한 20년의 알베도 분석 결과, 모든 토지이용에서 알베도가 상승하는 경향이 나타났다. 2000년대(2002-2011)에 비해 2010년대(2012-2021)의 평균 알베도가 산림 지역에서 0.0027의 가장 큰 상승값을 보였고, 그 다음으로 초지가 0.0024의 상승값을 보였다. VIIRS와 MODIS의 알베도를 비교한 결과, VIIRS의 알베도가 0.001에서 0.1 만큼 더 큰 것으로 나타났으며, 이는 영상의 촬영시기에 따른 지표면 반사도와 센서의 특성 차이에 의한 것으로 판단된다.

Counting and Localizing Occupants using IR-UWB Radar and Machine Learning

  • Ji, Geonwoo;Lee, Changwon;Yun, Jaeseok
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.1-9
    • /
    • 2022
  • 사람이나 사물 등의 위치를 알아낼 수 있는 측위기술은 사람의 유동량 측정, 보안, 인원 구조 등 다양한 환경에서 요구되고 사용될 수 있다. 측위를 위해 카메라와 같은 시각 센서기술을 사용하기도 하지만 이는 빛, 온도 등 주변 환경에 민감하며 사생활 노출 문제가 발생할 수 있다. 본 논문에서는 앞서 말한 문제들이 없는 초광대역 (UWB, ultra wideband) 레이더 기술과 머신러닝을 이용하여 벽 뒤 다른 실내공간에 있는 점유자의 수와 위치를 인식하는 연구를 수행하였다. 네 가지 상황 (강의실 내 몇 명이 있는지, 28가지의 위치를 정하고 어느 위치에 있는지, 28가지의 위치 중 한 위치에서 더 세부적인 16가지 위치 중 어느 위치에 있는지, 두 명이 동시에 있는 상황에서 어느 위치에 있는지)에 대해 극단적 랜덤 트리 등 네 가지 알고리즘 별로 모델을 생성하고 그 결과를 비교하였다. 전체적으로 네 가지 알고리즘 모두 좋은 결과를 보여주었으며 머신러닝을 이용해 위치인식 및 위치측정이 가능함을 검증하였다. 또한 oneM2M 표준 플랫폼을 활용하여 서비스 확장 가능성을 고려하였으며 이 기술을 여러 분야에서 활용한다면 더욱 많은 서비스나 제품을 창출할 수 있을 것으로 기대한다.

항공용 전자광학추적장비의 전달정렬 성능 개선 (Improvement of Transfer Alignment Performance for Airborne EOTS)

  • 김민수;이도근;정치운;정지희
    • 항공우주시스템공학회지
    • /
    • 제16권4호
    • /
    • pp.60-67
    • /
    • 2022
  • 일반적인 항공기의 전자광학추적장비(Electro-Optical Tracking System, EOTS)는 EO/IR, 레이저 센서 등의 구성품으로 구성된다. 표적 획득 시 요구되는 표적 좌표는 내부 구성품인 관성측정장비(Inertial Measurement Unit, IMU)에서 측정되는 자세와 가속도 측정값을 이용하여 획득된다. 특히 무장시스템을 운용하는 항공기의 경우, 무장 발사를 위한 표적 좌표를 얼마나 신속하고 정확하게 획득하는가에 따라 무장시스템의 성능이 좌우된다. 무장시스템에서 요구하는 좌표 정확도를 충족하기 위해서는 IMU가 정렬 완료 상태에서 운용되어야 하므로 신속하게 자세와 가속도를 측정하여 IMU 초기 안정화 시간을 단축하여야 한다. IMU의 정렬은 IMU의 자세 오차를 해소하여 초기 자세를 결정하는 과정이며, 항공용 EOTS와 같은 임무장비의 IMU는 항법용 GPS/INS의 속도 정보를 기준으로 하는 속도정합 전달정렬을 수행한다. 본 논문에서는 이러한 속도정합 전달정렬 시간 단축을 위해 항공기와 임무장비의 자세 변화를 통한 전달정렬 성능 개선방안을 제시하였다. 먼저 전달정렬 모델과 시뮬레이션 결과를 통해서 EOTS의 전달정렬이 지연되는 요소가 방위각 오차임을 식별하였다. 그리고 EOTS의 방위각 오차 해소를 위해 항공기의 가속도 기동 및 EOTS의 자세 변화가 요구됨을 확인하였다. 최종적으로 OOO 항공기 체계에 적용한 비행시험 결과, 항공기 가속도 약 0.2g 이상이 발생하면서 EOTS가 6.7deg/s 각속도로 고각 운동 시 그렇지 않을 때보다 5배 이상 빠르게 정렬이 완료되어 전달정렬 성능이 개선되었다.

Organic Light-Emitting Diodes 디스플레이 기술의 특허 동향과 기술적 가치에 관한 탐색적 연구 (An Exploratory research on patent trends and technological value of Organic Light-Emitting Diodes display technology)

  • 김민구;김용우;정태현;김영민
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.135-155
    • /
    • 2022
  • 본 연구는 Organic Light-Emitting Diodes(OLEDs) 산업의 하위기술 분야를 도출하여 특허 동향을 분석하고 각 하위기술 분야별 기술 가치, 독창성, 다양성을 분석한다. 특허 자료 수집을 위해 OLED 기술과 관련된 국제 특허 분류(International Patent Classification) 집합을 정의하고, 이를 활용해 2005년부터 2017년까지 출원된 OLED 연관 특허를 수집하였다. 이어서 토픽모델을 이용하여 대량의 특허 문서를 12가지 주요 기술로 구분하고 각 기술에 대한 동향을 조사하였다. 그중 터치 센서, 모듈, 이미지 처리, 회로 구동 관련 특허는 증가 추세를 보였으나 가상 현실, 사용자 인터페이스 관련 특허는 최근 감소하였고, 박막 트랜지스터, 지문 인식, 광학필름 관련 특허는 지속적인 추세를 보였다. 이후 각 기술 그룹에 포함된 특허의 전방 인용 수, 독창성, 다양성을 조사하여 기술적 가치를 비교하였다. 결과로부터 전방 인용 수, 독창성, 다양성이 높은 이미지 처리기술, UI/UX, 모듈 기술, 점착 기술 분야가 상대적으로 높은 기술적 가치를 보여주었다. 본 연구를 통해 기업의 기술 전략 수립과정에서 활용 가치가 높은 정보를 제공한다.

지하수의 플랫폼 동시성과 Digital Twin의 개념과 적용 (Concept and Application of Groundwater's Platform Concurrency and Digital Twin)

  • 최두형;김병우;권이재;김화영;기철서
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.13-13
    • /
    • 2023
  • 디지털 기술은 오늘날 플랫폼과 디지털 트윈의 기술도입을 통해 현실 세계를 네트워크와 가상세계와의 연결이 통합되어진 가상 현실 세계의 입문 도약이다. 현실에서 가상현실의 사이의 디지털 전환(digital transformation)에는 디지털 기술과 솔루션을 비즈니스의 모든 영역에 통합하는 것이 포함된다. 이러한 디지털 전환의 핵심은 데이터에 관한 것이며, 데이터를 활용하여 가치를 창출하고 고객경험과 비즈니스 영역을 극대화하는 방식을 제공한다. 최적의 데이터를 제공하기 위한 플랫폼과 가상 현실세계 구현을 위한 디지털 트윈의 상호연계 관한 기본 개념은 데이터 수집, 데이터 분석, 데이터 시각화 및 데이터 보고와 같은 데이터 비즈니스이다. 현장 데이터는 디지털 양식을 통해 수집, 기록, 저장된다. 현장 IoT 기반 데이터(사진 및 비디오 매체 등)는 지속적으로 수집되고 종종 다른 데이터베이스에 저장되지만 지리 공간적 위치에 연결되지 않는다. 모든 디지털 발전을 조화시키고 지하수 데이터에서 더 빠른 이해를 도출하기 위해서는 디지털 트윈이 시작되어야 한다. 단일 지하수플랫폼에서 현장 조건을 시각화하고 실시간 데이터를 스트리밍하며, 과거 3D 데이터와 상호작용하여지질 또는 지화학 데이터를 선택적 사용을 위해 지하수 플랫폼과 디지털 트윈이 연계되어야 한다. 데이터를 디지털 정보모델과 연결하면 디지털 트윈에 생명을 불어넣을 수 있지만 디지털 트윈의 가치를 극대화하려면 여전히 데이터 플랫폼 서비스와 전달 방식을 선택해야 한다. 지하수 플랫폼동시성을 갖는 디지털 트윈은 정적 및 동적 데이터를 저장하는 데이터베이스 또는 크라우드 서비스에서 데이터를 가져오는 API(애플리케이션 프로그래밍 인터레이스), 디지털 트윈을 위한 호스팅 공간, 디지털 대상을 구축하는 소프트웨어, 구성 요소 간 읽기/쓰기를 위한 스크립트, chatGPT 및 API를 활용할 수 있다. 이를 통해 수집된 데이터의 실시간 양방향 통신기술인 지하수 플랫폼 기술을 활용하여 디지털 트윈을 적용하고 완성할 수 있고, 이를 지하수 분야에도 그대로 적용할 수 있다. 지하수 분야의 디지털 트윈 기술의 근간은 지하수 모니터링을 위한 관측장치와 이를 활용한 지하수 플랫폼의 구축 및 양방향 자료전송을 통한 분석 및 예측기술이다. 특히 낙동강과 같이 유역면적이 넓고 유역 내 지자체가 많아 이해관계가 다양하며, 가뭄과 홍수/태풍 등 기후위기에 따른 극한 기상이변가 자주 발생하고, 또한 보 및 하굿둑 개방 등 정부정책 이행에 따른 민원이 다수 발생하는 지역의 경우 하천과 유역에 대한 지하수 플랫폼과 디지털 트윈의 동시성 기술적용 시 지하수 데이터에 대한 고려가 반드시 수반되어야 한다.

  • PDF