• Title/Summary/Keyword: 센서리스 벡터제어

Search Result 127, Processing Time 0.028 seconds

Observer-based Sensorless Direct Torque Control of Permanent Magnet Synchronous Motors (속도 관측기를 적용한 영구자석 동기전동기의 센서리스 직접토크제어)

  • Park, Jeong-Woo;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.283-284
    • /
    • 2016
  • 산업계에 널리 쓰이고 있는 회전자 자속기준 벡터제어(FOC)와 달리 직접토크제어(DTC)는 고정자 자속기준으로 토크와 자속을 직접 제어한다. 토크는 전류센서를 이용하여 검출한 고정자 전류와 고정자 자속을 곱하여 구한다. 고정자 자속은 매우 빠르게 스위칭되는 전압벡터지령을 이용하여 얻게 되므로, 고정자 자속각을 이용한 속도추정에 어려움이 있다. 따라서, 본 논문은 관측기를 이용한 직접토크제어의 속도 센서리스 구현기법을 제안하고, 기존의 속도추정 기법과 제안하는 기법을 시뮬레이션을 통해 비교한다.

  • PDF

Vector Control of Wound Rotor Induction Motor without Speed Sensor (속도검출기가 없는 권선형 유도전동기의 벡터제어)

  • 이홍희;배정용
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.514-517
    • /
    • 1999
  • 산업 현장에서 널리 사용되고 있는 권선형 유도전동기의 완전한 벡터제어를 속도 검출기를 사용하지 않고 슬립 주파수를 추정하여 구현할 수 있는 알고리즘을 제안했다. 기존의 센서리스 벡터제어 알고리즘의 전동기의 저항의 변동에 대하여 아주 민감하지만 본 논문에서 제안된 알고리즘은 여자 전류 및 슬립주파수 측정에 전동기 2차 저항을 필요로 하지 않아 전동기 정수 변동으로 인한 벡터제어의 불완전함을 제거했다. 시뮬레이션을 통하여 제안된 알고리즘의 우수한 특성과 그 타당성을 확인을 하였다.

  • PDF

Speed Controller Transition Method for I-F Operation and Sensorless Operation of Permanent Magnet Synchronous Motor (영구자석 동기 전동기의 I-F 구동과 센서리스 구동을 위한 속도 제어 절환 기법)

  • Kim, Dong-Uk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.543-551
    • /
    • 2019
  • Permanent Magnet Synchronous Motors(PMSMs) have a wider range of applications due to their high output density and high efficiency. PMSMs are used not only in high-power density, high-performance motor-driven systems such as vehicle and robots, but also in systems where cost-cutting is very important, such as washing machines, air conditioners and refrigerators. To reduce costs, position sensorless control is required, which is generally difficult to be used under conditions of starting the motor. Thus, the I-F speed control that rotates the current vector at any speed in the starting procedure should be used at first, and then the sensorless speed control could be applied after PMSM rotates above a certain speed. Speed control performance in I-F speed control and sensorless speed control is very important. And more speed control performance should be maintained even in the transient in which the two control techniques are changed. In this paper, the speed controller transition method from I-F speed control to sensorless speed control of permanent magnet synchronous motor is proposed. Experiments were carried out on the washing machine drive system to verify the performance of the proposed technique.

Sensorless Control of PMSG for Small Wind Turbines (소형 풍력발전용 영구자석형 동기발전기의 센서리스 제어)

  • Jang, Suk-Ho;Park, Hong-Geuk;Lee, Dong-Choon;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • In this paper, a sensorless control of PMSG(Permanent Magnet Synchronous Generator) for small wind turbine systems, which is based on stator flux and back-emf estimation. Also, a cost-effective AE/DC/AC converter that consists of a two-leg three-phase PWM converter and a half-bridge PWM converter is used for vector control of PMSG, which is impossible with the conventional diode-rectifier type converter. A sensorless control algorithm can eliminate pulse encoders for speed measurement, which reduces the system cost. Using PSIM simulation, the validity of the converter control performance and MPPT control of PMSG have been verified.

Vector Control of Interior Permanent Magnet Synchronous Motor without Speed Sensor (속도 센서 없는 매입형 영구자석 동기전동기의 벡터제어)

  • Lee, Seung-Hun;Choi, Jong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.223-225
    • /
    • 2006
  • 본 논문에서는 매입형 영구자석 동기전동기(IPMSM)의 속도추정을 위한 새로운 센서리스 알고리즘을 제안한다. 매입형 영구자석 동기 전동기의 기본 전압 방정식을 이용하여 회전자의 자속을 추정하고, 위상고정루프(PLL)를 사용하여 회전자의 위치와 속도를 추정하는 방법으로 센서리스 알고리즘을 구성하였다. Matlab SIMULINK를 이용한 시뮬레이션과 실험을 통하여 제안된 알고리즘을 검증하였다.

  • PDF

A new sensorless speed control method for permanent magnet synchronous motor using direct torque control (직접토크제어를 이용한 영구자석 동기전동기의 새로운 센서리스 속도제어)

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.653-658
    • /
    • 2013
  • This paper describes a new sensorless speed control method for permanent magnet synchronous motor(PMSM) using direct torque control(DTC). The direct torque control offers fast torque response, lesser hardware and processing costs as compared to vector controlled drives. In this paper the current error compensation technique is applied for sensorless speed control of synchronous motor. Through this method, the controlled stator voltage is applied to the synchronous motor so that the error between stator currents of the mathematical model and the actual motor can be forced to decay to zero as time proceeds and therefore, the motor speed approaches to the setting value. Especially, any PI controllers are not necessary in this control method. The simulation results indicate good speed and load responses from the low speed range to the high.

ANN Sensorless Control of Induction Motor Dirve with AFLC (AFLC에 의한 유도전동기 드라이브의 ANN 센서리스 제어)

  • Chung, Dong-Hwa;Nam, Su-Myeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • This paper is proposed for a artificial neural network(ANN) sensorless control based on the vector controlled induction motor drive, or proposes a adaptive fuzzy teaming control(AFLC). The fuzzy logic principle is first utilized for the control rotor speed. AFLC scheme is then proposed in which the adaptation mechanism is executed using fuzzy logic. Also, this paper is proposed for a method of the estimation of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

Position and Speed Sensorless Vector Control of SynRM for Efficiency Optimization Control (효율 최적화 제어를 위한 SynRM의 위치 및 속도 센서리스 벡터제어)

  • Lee , Jung-Chul;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.59-70
    • /
    • 2002
  • This paper proposes a position and speed sensorless vector control for Synchronous Reluctance Motor(SynRM) operating at optimum efficiency and high response, in which core loss is taken into account, and discusses the performance of system. The proposed control scheme is based on the flux estimation combined stator voltage and current. In this paper, current angle condition of efficiency optimization which minimizes the copper and iron losses is derived based on the equivalent circuit model of the SynRM. The research result of closed loop position and speed control with efficiency optimization control is given to verify the proposed scheme.

Speed Sensorless Vector Control of Wound Induction Motor Using a MRAS Method (MRAS 기법을 이용한 권선형 유도전동기의 속도센서리스 벡터제어)

  • Choi, Hyun-Sik;Lee, Jae-Hak;Um, Tae-Wook
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large resistor externally when starting. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as crane and cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and is generally used for control of current torque, position, and speed for the wound induction motor drive system. However, the conventional control system for wound induction motor may result in poor performance because sensors have to be used but are often limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents a MRAS method for sensorless vector control of the wound induction motor drive. In the conventional MRAS method, in low frequency, the stator resistance variation may result in poor performance. Therefore, this paper presents a MRAS method with stator and rotor resistance tuning for sensorless vector control of the wound induction motor to overcome several shortages of the conventional MRAS caused by parameter variation and to enhance the robustness of the sensorless vector control. The validity and effectiveness of the proposed method is verified through digital simulation.

Adaptive Speed Identification for Sensorless Vector Control of Induction Motors with Torque (토크를 물리량으로 가지는 적응제어 구조의 센서리스 벡터제어)

  • 김도영;박철우;최병태;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.230-230
    • /
    • 2000
  • This paper describes a model reference adaptive system(MRAS) for speed control of vector-controlled induction motor without a speed sensor. The proposed approach is based on observing the instantaneous torque. The real torque is calculated by sensing stator current and estimated torque is calculated by stator current that is calculated by using estimated rotor speed. The speed estimation error is linearly proportional to error between real torque and estimated torque. The proposed feedback loop has linear component. Furthermore proposed method is robust to parameters variation. The effectiveness is verified by equation and simulation

  • PDF