• Title/Summary/Keyword: 센서네트워크 시뮬레이터

Search Result 103, Processing Time 0.018 seconds

An Analysis on Data Throughput of PicoCast Affected by Piconet Mutual Interference (피코넷 상호 간섭이 PicoCast 데이터 전송량에 미치는 영향 분석)

  • Chung, Jae-Kyong;Jeon, Sang-Yeop;Kim, Myoung Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.40-49
    • /
    • 2015
  • PicoCast is a recently proposed short-range wireless communications technology that supports both low rate sensor/control data and high speed data such as voice and video traffic in the personal space, defined by the user-centric space of radius tens of meters, with one unified protocol. When the users are in the same area, personal spaces defined by each user may overlap. Since these PicoCast piconets may simultaneously operate, mutual interference is unavoidable. It is necessary to investigate the effect of mutual interference on data transmission and to conduct research on minimizing the interference among PicoCast devices. In this paper we analyze the effect of mutual interference between PicoCast piconets based on data throughput using OPNET network simulator. We have implemented the PicoCast protocol and measured the average throughput and packet loss rate.

Ontology-based User Intention Recognition for Proactive Planning of Intelligent Robot Behavior (지능형로봇 행동의 능동적 계획수립을 위한 온톨로지 기반 사용자 의도인식)

  • Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.86-99
    • /
    • 2011
  • Due to the uncertainty of intention recognition for behaviors of users, the intention is differently recognized according to the situation for the same behavior by the same user, the accuracy of user intention recognition by minimizing the uncertainty is able to be improved. This paper suggests a novel ontology-based method to recognize user intentions, and able to minimize the uncertainties that are the obstacles against the precise recognition of user intention. This approach creates ontology for user intention, makes a hierarchy and relationship among user intentions by using RuleML as well as Dynamic Bayesian Network, and improves the accuracy of user intention recognition by using the defined RuleML as well as the gathered sensor data such as temperature, humidity, vision, and auditory. To evaluate the performance of robot proactive planning mechanism, we developed a simulator, carried out some experiments to measure the accuracy of user intention recognition for all possible situations, and analyzed and detailed described the results. The result of our experiments represented relatively high level the accuracy of user intention recognition. On the other hand, the result of experiments tells us the fact that the actions including the uncertainty get in the way the precise user intention recognition.

Analysis on Energy Consumption Required for Building DTLS Session Between Lightweight Devices in Internet of Things (사물인터넷에서 경량화 장치 간 DTLS 세션 설정 시 에너지 소비량 분석)

  • Kwon, Hyeokjin;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1588-1596
    • /
    • 2015
  • In the Internet of Things (IoT), resource-constrained devices such as sensors are capable of communicating and exchanging data over the Internet. The IETF standard group has specified an application protocol CoAP, which uses UDP as a transport protocol, allows such a lightweight device to transmit data. Also, the IETF recommended the DTLS binding for securing CoAP. However, additional features should be added to the DTLS protocol to resolve several problems such as packet loss, reordering, fragmentation and replay attack. Consequently, performance of DTLS is worse than TLS. It is highly required for lightweight devices powered by small battery to design and implement a security protocol in an energy efficient manner. This paper thus discusses about DTLS performance in the perspective of energy consumption. To analyze the performance, we implemented IEEE 802.15.4 based test network consisting of constrained sensor devices in the Cooja simulator. We measured energy consumptions required for each of DTLS client and server in the test network. This paper compares the energy consumption and amount of transmitted data of each flight of DTLS handshake, and the processing and receiving time. We present the analyzed results with regard to code size, cipher primitive and fragmentation as well.