• Title/Summary/Keyword: 세포 외 기질

Search Result 203, Processing Time 0.033 seconds

Influence of Substrates on the Isozyme Patterns of Cellulase and Xylanase Complexes in Aspergillus niger (Aspergillus niger에 있어서 섬유질 분해효소계의 동질효소 양상에 미치는 기질의 영향)

  • Rho, Jae-Rang;Rhee, Young-Ha;Chung, Jae-Hoon
    • The Korean Journal of Mycology
    • /
    • v.18 no.4
    • /
    • pp.209-217
    • /
    • 1990
  • The influence of cellulosic and hemicellulosic substrates on the production of cellulase and xylanase complexes in Aspergillus niger was investigated. The culture conditions with different substrates exhibited profound effects on the level of endoglucanase (CMCase), ${\beta}-glucosidase$, endoxylanase and ${\beta}-xylosidase$, and on their isozyme patterns. However, intracellular and extracellular isozyme patterns of cellulase and xylanase complexes were qualitatively identical and appeared to be simultaneous in the early growth phase. Prolonged incubation led to the increase in the concentrations of isozymes with a little changes in the relative proportions of those isozymes. These results suggest that the biosynthesis of cellulase and xylanase complexes in A. niger is coordinately regulated at the level of induction. Moreover, multiple forms of extracellular cellulase and xylanase complexes seem to be the outcome of specific gene expression and should not be considered solely as the consequence of post-secretional modification of synthesized enzymes.

  • PDF

Protective Effect of Rhus Semialata M. extract on Epidermal Stem Cells against UV Irradiation (자외선 조사된 상피 줄기세포에 대한 붉나무 추출물의 보호 효과)

  • Woo, Hyunjoo;You, Jiyoung;Park, Deokhoon;Jung, Eunsun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.4
    • /
    • pp.415-422
    • /
    • 2019
  • Human epidermal stem cells(ESCs) residing in the basement membrane of the skin have an important role in maintenance of skin homeostasis of epidermal layer. Although, ESCs provide new cells to repair damaged tissue in response to tissue injury, subsets of stem cells remain in the quiescent state protected from differentiation and senescence for prolonged survivals. In this perspective, the stem cell niche, which is specific microenvironment composed of niche cells and an extracellular matrix(ECM), supplies the relevant signal to save stem cells from microenvironmental damages. The expression of stemness marker on the surface of ESCs contributes to the attachment on their ECM of the basement membrane, which lead to growth potential and apoptotic resistance against environmental stimuli. In this study, we observed that UV irradiation, a major factor of environmental stimuli, reduced the expression of α2, β1 and α6 integrin in ESCs. Rhus Semialata M extract(RSE) showed inhibitory effect on the UVB-induced reduction of integrin expression. Furthermore, RSE could upregulate the expression of Col-IV and Laminin, which contribute to the attachment of ESCs. These results indicated that RSE could be a potent ingredient for the protection of ESCs from UV irradiation by increasing the expression of integrin and substrate ECM components at their niche.

Chitosan-alginate Gel Modified Poly (L-Lactic-co-ε-Caprolactone) (PLCL) as a Scaffold for Cartilage Tissue Engineering (변형된 키토산 알지네이트 겔 poly (L-Lactic-co-ε-Caprolactone) 지지체의 연골 조직 재생 평가)

  • Sutradhar, Bibek Chandra;Hwang, Yawon;Choi, Seokhwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • This study was designed in the fabricated poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold using chitosan-alginate hydrogel, which would be more suitable to maintain the biological and physiological functions continuing three dimensional spatial organizations for chondrocytes. As a scaffold, hydrogels alone is weak at endure complex loading within the body. In this study, we made cell hybrid scaffold constructs with poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold and hydrogels to make a three-dimensional composition of cells and extracellular matrix, which would be a mimic of a native cartilage. Using a particle leaching technique with NaCl, we fabricated a highly-elastic scaffold from PLCL with 85% porosity and $300-500{\mu}m$ pore size. A mixture of bovine chondrocytes and chitosan-alginate gel was seeded and compared with alginate as a control on the PLCL scaffold. The cell maturation, proliferation, extracellular matrix synthesis, glycosaminoglycans (sGAG) production and collagen type-II expressions were better in chondrocytes seeded in chitosan-alginate hydrogel than in alginate only. These results indicate that chondrocytes with chitosan-alginate gel on PLCL scaffolds provide an appropriate biomimetic environment for cell proliferation and matrix synthesis, which could successfully be used for cartilage repair and regeneration.

조직공학용 전기방사 나노섬유 지지체 제조방법

  • Park, Seok-Hui;Go, Ung-Hyeon;Sin, Hyeon-Jeong
    • Journal of the KSME
    • /
    • v.55 no.11
    • /
    • pp.34-39
    • /
    • 2015
  • 이 글에서는 나노스케일의 직경을 갖는 섬유를 빠른 생산속도로 제작할 수 있는 전기방사공정(electrospinning process)에 대한 개요와 조직공학용 지지체(tissue engineering scaffold)로의 응용을 위한 제조방법에 대해 소개하고자 한다. 세포의 증식, 분화 등의 생물학적 활동에 기반한 조직공학 및 조직재생 분야에서는 일시적 또는 영구적으로 세포가 부착하여 생장할 수 있는 지지체(scaffold)의 활용이 필수적이다. 세포가 이상적으로 성장할 수 있는 지지체를 제작하기 위해서는 세포의 부착 특성, 화학적/물리적/구조적 성장 환경 등이 고려되어야 한다. 따라서 이상적인 세포 성장 환경을 구현하기 위해 실제 세포 주변의 미세환경(microenvironmenr)조건을 모사하는 연구가 많이 이루어지고 있다. 세포외기질(extracellular matrix)이라고 하는 나노크기의 직경을 갖는 섬유기반의 세포 주변 환경을 모사하는 방법의 하나로 전기방사 공정이 '90년대에 들어 활용되기 시작하였다. 현재까지도 전기방사를 이용하여 제작되는 나노섬유는 공정조건 및 재료를 다양하게 응용하여 조직의 물리 화학적 특성을 잘 반영할 수 있는 장점이 있어 조직공학용 지지체로서 광범위하게 활용되고 있다.

  • PDF

Study on an Effective Decellularization Technique for Cardiac Valve, Arterial Wall and Pericardium Xenographs: Optimization of Decellularization (이종 심장 판막 및 대혈관 이식편과 심낭에서 효과적인 탈세포화 방법에 관한 연구: 탈세포화의 최적화)

  • Park, Chun-Soo;Kim, Yong-Jin;Sung, Si-Chan;Park, Ji-Eun;Choi, Sun-Young;Kim, Woong-Han;Kim, Kyung-Hwan
    • Journal of Chest Surgery
    • /
    • v.41 no.5
    • /
    • pp.550-562
    • /
    • 2008
  • Background: We attempted to reproduce a previously reported method that is known to be effective for decellularization, and we sought to find the optimal condition for decellularization by introducing some modifications to this method. Material and Method: Porcine semilunar valves, arterial walls and pericardium were processed for decellularization with using a variety of combinations and concentrations of decellularizing agents under different conditions of temperature, osmolarity and incubation time. The degree of decellularization and the preservation of the extracellular matrix were evaluated by staining with hematoxylin and eosin and with alpha-Gal and DAPI in some of the decellularized tissues. Result: Decellularization was achieved in the specimens that were treated with sodium deoxycholate, sodium dodesyl sulfate, Triton X-100 and sodium dodesyl sulfate with Triton X-100 as single-step methods, and this was also achieved in the specimens that were treated with hypotonic solution ${\rightarrow}$ Triton X-100 ${\rightarrow}$ sodium dodesyl sulfate, sodium deoxycholate ${\rightarrow}$ hypotonic solution ${\rightarrow}$ sodium dodesyl sulfate, and hypotonic solution sodium dodesyl sulfate as multi-step methods. Conclusion: Considering the number and the amount of the chemicals that were used, the incubation time and the degree of damage to the extracellular matrix, a single-step method with sodium dodesyl sulfate and Triton X-100 and a multi-step method with hypotonic solution followed by sodium dodesyl sulfate were both relatively optimal methods for decellularization in this study.

Batch Kinetics of Exo-polysaccharide Production by Submerged Cultivation of Ganoderma lucidum (영지의 액체배양에 의한 세포외 다당 생산의 동력학적 특성)

  • Lee, Shin-Young;Lee, Hak-Su;Park, Heung-Cho
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.304-311
    • /
    • 1999
  • Batch kinetics during the exo-polysaccharide (EPS) fermentation of Ganoderma lucidum was investigated as a function of different substrates (glucose and starch), substrate concentration $(1{\sim}7%,\;w/v)$ and subculture (3 times). Logistic model for mycelial growth fitted the experimental data better than Monod and two thirds power model. The Luedeking-Pirt equation was adequate to fit the kinetic data of product formation and substrate consumption. The EPS production was strongly non-growth associated, although it was mixed type. The product formation and sustrate consumption by growth associated mechanism decreased as the concentration of glucose increased, while those of the non-growth associated mechanism increased. However, starch medium increased the growth associated and non-growth associated substrate consumption indicating higher availability of substrate. Also, batch culture in starch medium showed the higher specific growth rate and stability during subculture than those in glucose medium. In conclusion, the enhanced EPS production and stability in the subculture was found to be remarkably improved by use of starch as sole carbon source in medium. The maximum mycelium dry weight and EPS production of 9.463 and 10.410 g/l, respectively, were obtained after shake culture of 7 days at $30^{\circ}C$ from the media containing 7% starch.

  • PDF

Exopolysaccharide Production by Aureobasidium pullulans - Appearance of Melanin Pigment - (Aureobasidium pullulans 에 의한 Exopolysaccharide 생산 - 멜라닌 색소의 출현에 관한 연구 -)

  • 김재형;이기영;강성홍
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.134-142
    • /
    • 1989
  • In exopolysaccharide fermentation by Aureobasidium pulluans, the effects culture conditions (concentration of nitrogen, potassium phosphate, dissolved oxygen, and initial pH) on the production of exopolysaccharide and the appearance of melanin pigment were investigated. The results are as follows. (1) The specific growth rate and the specific production rate of exopolysaccharide were inhibited by substrate when the carbon source concentration higher than $50g\;/\;{\ell}$ and the cell growth increased with increases of nitrogen source but exopolysaccharide production decreased with the nitrogen concentration when it become greater than $1\;g\;/\;{\ell}$. (2) The maximum cell growth and the maximum exopolysaccharide production were obtained at initial pH values of 3.0 and 7.5 respectively. As the initial pH increased, the yeast-like cells increased and the increased of dissolved oxygen increased the cell growth and exopolysaccharide production. (3) As the concentration of dissolved oxygen is increased or the concentration of nitrogen source is decreased, the period of melanin pigment appearance becomes shorter and the melanin pigment never appeared when the initial pH was less than 3.0 or the potassium phosphate was not added.

  • PDF

Laminin Expression in the Rat Lung Development (흰쥐 폐 발생시 Laminin의 발현에 대한 연구)

  • Chung, Ho-Sam;Park, Chul-Hong;Paik, Doo-Jin;Baik, Tae-Kyung;Kim, Won-Kyu;Youn, Jee-Hee;Suh, Yun-Kyung
    • Applied Microscopy
    • /
    • v.31 no.1
    • /
    • pp.71-83
    • /
    • 2001
  • Laminin, a kind of multidomain glycoproteins, is mainly localized in the basement membranes of various tissues. It is known that laminin plays an important part in mammalian lung morphogenesis. The authors have undertaken this study to investigate the changes in the distribution of laminin, and to find out cells which synthesize laminin during the organogenesis and differentiation of the lung. The fetal and neoantal rats (Sprague-Dawley strain) were used as experimental animals. The immunohisto-chemical methods were employed for detection of laminin within the developing lung tissue and the immunegold cytochemical methods were performed for detection of cells which synthesize laminin according to each stage of development. The results are as follows; 1. During fetal life, strong immunoreactivity for laminin is maintained in the basement membranes of the blood vessels and the bronchioles, the extracellular matrix of the mesenchyme, and basal lamina of the alveolar septum in the fetal rat lung. 2. After birth, laminin immunoreactivity at the alveolar septum is gradually reduced. 3. During fetal life, laminin is mainly detected within the cytoplasm of the mesenchymal cells, the endothelial cells of blood vessels and the fibroblasts in fetal rat lung. 4. According to the differentiation of type I and type II pneumocyte after birth, laminin is detected within cytoplasm of the type I pneumocytes, type II pneumocytes and fibroblasts. It is consequently suggested that laminin is largely expressed in the developing lung and laminin may be also synthesized by the type II pneumonocytes at early newborn stages.

  • PDF

Role of Lysyl Oxidase Family during Odontoblastic Differentiation of Human Dental Pulp Cells Induced with Odontogenic Supplement (인간치수세포에서 상아모세포의 분화과정 동안 Lysyl Oxidase Family의 역할)

  • Lee, Hwa-Jeong;Han, Soo-Yeon
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.296-303
    • /
    • 2013
  • Lysyl oxidase (LOX), extracellular matrix enzyme, is catalyzing lysine-derived crosslinks in collagen and elastin. Recently, several LOX-like proteins (LOXL, LOXL2, LOXL3 and LOXL4) have been identified in human but their specific functions are still largely unknown. The purpose of this study was to evaluate the function of the LOX family genes during odontoblastic differentiation of human dental pulp (HDP) cells induced with odontogenic supplement (OS). The messenger RNA (mRNA) expression of LOX family genes and differentiation markers was assessed by reverse transcriptase polymerase chain reaction analysis (RT-PCR). The formation of mineralization nodules was evaluated by alrizarin red S staining. Amine oxidase activity of HDP cells was measured by peroxidase-coupled fluormetric assay. The expressions of differentiation markers, such as alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), dentin matrix protein1 (DMP1), dentin sialophosphoprotein (DSPP) in HDP cells were increased after treatment with OS media. The LOX and LOXL mRNA expression were gradually increased in OS media, whereas LOX enzyme activities were markedly detected on day 7. The mRNA expression and LOX enzyme activity of collagen type I was very similar to the pattern of LOX gene. In this study, the expression of LOX and its isoforms, and activity of LOX were highly regulated during odontoblastic differentiation. Thus, these results suggest that LOX plays a key role in odontoblastic differentiation of HDP cells.

Enzymatic Properties of Extracellular Cytosine Deaminase (세포외 Cytosine Deaminase의 효소학적 성질)

  • 유대식;김대현;박정문;송형익;정기택
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.368-374
    • /
    • 1988
  • Enzymological proprties of an extracellular cytosine deaminase from Bacellus polymyxa YL 38-3 were investigated. The extracellular enzyme was very stable, and optimum pH and temperature for the enzyme activity were found to be near pH 6.0 in 0.2M potassium phosphate buffer and at $30^{\circ}C$, respectively. 5-Fluorocytosine was converyed to 5-fluorouracil by the enzyme, but 5-methylcytosine was not to thymine by it. The enzyme activity was completely inhibited by some heavy metal ion such as 1mM of $Cd^{2-}$ and $Hg^{2+}$, and by 1mM of p-chloromercuribenzoate, respectively. The enzyme activity was inactivated about 75% by 1mM of o-phenanthroline and monoiodoacetate. But the enzyme activity was stimulated up to 200% by 1mM of 2-mercaptoethanol.

  • PDF