• Title/Summary/Keyword: 세포집락 측정기법

Search Result 2, Processing Time 0.027 seconds

The Optimal Condition of Performing MTT Assay for the Determination of Radiation Sensitivity (방사선 감수성 측정법으로서 MTT 법 시행 시의 최적 조건에 대한 연구)

  • Hong, Se-Mie;Kim, Il-Han
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2001
  • Purpose : The measurement of radiation survival using a clonogenic assay, the established standard, can be difficult and time consuming. In this study, We have used the MTT assay, based on the reduction of a tetrazolium salt to a purple formazan precipitate by living cells, as a substitution for clonogenic assay and have examined the optimal condition for performing this assay in determination of radiation sensitivity. Materials and Methods : Four human cancer cell lines - PCI-1, SNU-1066, NCI-H630 and RKO cells have been used. For each cell line, a clonogenic assay and a MTT assay using Premix WST-1 solution, which is one of the tetrazolium salts and does not require washing or solubilization of the precipitate were carried out after irradiation of 0, 2, 4, 6, 8, 10 Gy. For clonogenic assay, cells in $25\;cm^2$ flasks were irradiated after overnight incubation and the resultant colonies containing more than 50 cells were scored after culturing the cells for $10\~14$ days. For MTT assay, the relationship between absorbance and cell number, optimal seeding cell number, and optimal timing of assay was determined. Then, MTT assay was performed when the irradiated cells had regained exponential growth or when the non-irradiated cells had undergone four or more doubling times. Results : There was minimal variation in the values gained from these two methods with the standard deviation generally less than $5\%$, and there were no statistically significant differences between two methods according to t-test in low radiation dose (below 6 Gy). The regression analyses showed high linear correlation with the $R^2$ value of $0.975\~0.992$ between data from the two different methods. The optimal cell numbers for MTT assay were found to be dependent on plating efficiency of used cell line. Less than 300 cells/well were appropriate for cells with high plating efficiency (more than $30\%$). For cells with low plating efficiency (less than $30\%$), 500 cells/well or more were appropriate for assay. The optimal time for MTT assay was after 6 doubling times for the results compatible with those of clonogenic assay, at least after 4 doubling times was required for valid results. In consideration of practical limits of assay (12 days, in this study) cells with doubling time more than 3 days were inappropriate for application. Conclusion : In conclusion, it is found that MTT assay can successfully replace clonogenic assay of tested cancer cell lines after irradiation only if MTT assay was undertaken with optimal assay conditions that included plating efficiency of each cell line and doubling time at least.

  • PDF

The Use of MTT Assay, In Vitro and Ex Vivo, to Predict the Radiosensitivity of Colorectal Cancer (In-vitro와 Ex-vivo MTT Assay를 통한 직장암의 방사선치료 감수성 예측 가능성 검증)

  • Kim, Ji-Eun;Kim, Mi-Sook;Kang, Chang-Mo;Kim, Jong-Il;Shin, Hye-Kyung;Choi, Chul-Won;Seo, Young-Seok;Ji, Young-Hoon
    • Radiation Oncology Journal
    • /
    • v.26 no.3
    • /
    • pp.166-172
    • /
    • 2008
  • Purpose: The measurement of radiosensitivity of individuals is useful in radiation therapy. Unfortunately, the measurement of radiation survival using a clonogenic assay, which is the established standard, can be difficult and time consuming. The aim of this study is to compare radiosensitivity results obtained from the MTT and clonogenic assays, and to evaluate whether the MTT assay can be used on clinical specimens. Materials and Methods: HCT-8, LoVo, CT-26, and WiDr were the colon cancer cell lines used for this study. The clonogenic assay was performed to obtain the cell survival curves and surviving fractions at a dose of 2 Gy ($SF_2$) as the standard technique for radiosensitivity. Also, the MTT assay was performed for each of the cell lines (in vitro). To simulate clinical specimens, the cell lines were inoculated into nude mice, removed when the tumors reached 1 cm in diameter, and chopped. Next, the tumors were subjected to the same process involved with the MTT assay in vitro. The inhibition rates (IR) of 10 Gy or 20 Gy of irradiation for in vitro and ex vivo were calculated based on the optical density of the MTT assay, respectively. Results: According to $SF_2$ and the cell survival curve, the HCT-8 and WiDr cell lines were more resistant to radiation than LoVo and CT-26 (p<0.05). The IR was measured by in vitro. The MTT assay IR was 17.3%, 21%, 30% and 56.5% for the WiDr, HCT-8, LoVo and CT-26 cell lines, respectively. In addition, the IR measured ex vivo by the MTT assay was 23.5%, 26%, 38% and 53% in the HCT-8, WiDr, LoVo and CT-26 tumors, respectively. Conclusion: The radiosensitivity measured by the MTT assay was correlated with the measures obtained from the clonogenic assay. This result highlights the possibility that the MTT assay could be used in clinical specimens for individual radiosensitivity assays.