• Title/Summary/Keyword: 세포력 센싱

Search Result 3, Processing Time 0.017 seconds

Cellular Force Sensing for Force Feedback-Based Biological Cell Injection (힘 피드백 기반의 세포조작을 위한 세포막 침습력 측정)

  • Kim, Deok-Ho;Yun, Seok;Kang, Hyun-Jae;Kim, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2079-2084
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular force sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

Cellular Force Measurement for Force Feedback-Based Biomanipulation (힘반향 기반의 바이오매니퓰레이션을 위한 세포 조작력 측정)

  • Kim, Duk-Ho;Kim, Byung-Kyu;Yoon, Seok;Kang, Hyun-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.237-240
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular farce sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at several tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

  • PDF

Inhibition of Quorum Sensing and Biofilm Formation by Synthetic Quorum Signal Analogues in Pseudomonas aeruginosa (합성된 쿼럼 신호 유사 물질에 의한 녹농균 쿼럼 센싱 및 생물막 형성의 제어)

  • Kim, Soo-Kyoung;Kim, Cheol-Jin;Yoon, Je-Yong;Lee, Joon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Pseudomonas aeruginosa is an opportunistic pathogen that causes various infections on urinary track, cornea, respiratory track, and burn wound site, and mainly relies on quorum sensing (QS) for its virulence. To control the infectivity of P. aeruginosa, we previously synthesized the structural analogues of a major QS signal, N-3-oxododecanoyl homoserine lactone (3OC12-HSL) to use as a QS inhibitor. Two of them (5b and 5f) had been confirmed to have an inhibitory effect on LasR, a major QS signal receptor of P. aeruginosa in the screening by the recombinant Escherichia coli reporter. To further evaluate these compounds, we tested their efficacy to control the QS and virulence of P. aeruginosa. Unlike the result from E. coli reporter, both 5b and 5f failed to affect the LasR activity in P. aeruginosa, but instead they selectively affected the activity of QscR, another 3OC12-HSL receptor of P. aeruginosa. Interestingly, their effect on QscR was complex and opposite to what we obtained with E. coli system. Both 5b and 5f enhanced the QscR activity at the low concentration range (< 10 ${\mu}m$), but high concentration of 5f (${\approx}$1 mM) strongly inhibited QscR. While 5b and 5f didn't affect the production of proteases, the key virulence factor, they significantly reduced the biofilm formation that is important in mediating chronic infections. Especially, 5f inhibited the initial attachment of P. aeruginosa, rather than the biofilm maturation. Based on our results, we suggest that 5f can be applied for an anti-biofilm agent without increasing virulence of P. aeruginosa.