• Title/Summary/Keyword: 세션 키 설정

Search Result 35, Processing Time 0.017 seconds

Efficient Self-Healing Key Distribution Scheme (효율적인 Self-Healing키 분배 기법)

  • 홍도원;강주성;신상욱
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.6
    • /
    • pp.141-148
    • /
    • 2003
  • The self-healing key distribution scheme with revocation capability proposed by Staddon et al. enables a dynamic group of users to establish a group key over an unreliable network, and has the ability to revoke users from and add users to the group while being resistant to collusion attacks. In such a protocol, if some packet gets lost, users ale still capable of recovering the group key using the received packets without requesting additional transmission from the group manager. In this scheme, the storage overhead at each group member is O($m^2$1og p) and the broadcast message size of a group manager is O( ((m$t^2$+mt)log p), where m is the number of sessions, t is the maximum number of colluding group members, and p is a prime number that is large enough to accommodate a cryptographic key. In this paper we describe the more efficient self-healing key distribution scheme with revocation capability, which achieves the same goal with O(mlog p) storage overhead and O(($t^2$+mt)log p) communication overhead. We can reduce storage overhead at each group member and the broadcast message size of the group manager without adding additional computations at user's end and group manager's end.

A Secure Electronic Payment System in Intelligent Transportation Systems Using the Dedicated Short Range Communications (단거리 전용통신을 이용한 지능형 교통시스템에서의 안전한 전자 지불 시스템)

  • Jang Chung-Ryong;Lee Yong-Kwon
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.71-78
    • /
    • 2004
  • Dedicated Short Range Communications(DSRC) as a prominent communications candidate for Intelligent Transportation Systems(ITS) have been developed to support ITS applications such as value-added information service, e-commerce, electronic toll payment, etc. These various applications associated with electronic payment through unsecure communication channel of DSRC suffer from security threats. To ensure secure payment, we have adopted appropriate cryptographic mechanisms including encipherment, authentication exchange and digital signature. The cryptographic mechanisms require to use cryptographic keys established between two communication entities. In this paper, we propose a secure electronic payment system which is designed to have some functions for strong authentication, encryption, key agreement, etc. Especially, we adopt domestic developed cryptographic algorithms such as EC-KCDSA and SEED for digital signature and block cipher, respectively. We can show those mechanisms are appropriate for the secure electronic payment system for ITS services under the DSRC wireless environment in aspects of constrained computational resource use and processing speed.

  • PDF

Interworking of SIP Authentication with DIAMETER and Security Analysis (SIP와 DIAMETER의 인증 연동 및 안전성 분석)

  • 박성준;정수환;이병길;김현곤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.426-435
    • /
    • 2004
  • The DIAMETER protocol provides Authentication, Authorization, and Accounting (AAA) transactions across the Internet. SIP(Session Initiation Protocol) will be used for new types of signaling, such as instant messaging and application level mobility across networks. And SIP will be a major signaling protocol for next generation wireless networks. But the Digest authentication scheme is not using a secure method of user authentication in SIP, and it is vulnerable to man-in-the-middle attacks or dictionary attacks. This study focused on designing a SIP proxy for interworking with AAA server with respect to user authentication and security analysis. We compared and analyzed the security aspects of the scenarios and propose two proposals that a response which include the user address and password-based mutual authentication and key agreement protocol. It is claimed to be more secure against common attacks than current scenarios.

Personal Mutual Authentication System for Ubiquitous Wireless Environments (유비쿼터스 무선환경을 위한 개인 상호인증 시스템)

  • Kim Byung-Gi;Hong Sang-Sun;Jouhn Young-Keel
    • Journal of Internet Computing and Services
    • /
    • v.5 no.1
    • /
    • pp.99-111
    • /
    • 2004
  • Two general security measures in computing networks are secure data transmission and user authentication, These problems are still critical in the wireless LAN environments. Thus security becomes most significant issue in personal network environments and ubiquitous networks based on wireless LANs. We purpose a new authentication system for these kind of environments, and coined it UPMA(Ubiquitous Personal Mutual Authen-tication) model. UPMA supports authenticating configurations which provides personal verification for each system. It guarantees secure communications through the session key setup, and provides mutual authentication by verifying each user and his/her station. UPMA solves security problems in ubiquitous networks without accessing authentication server, Instead it performs mutual authentication between terminals or between systems. It is a global authentication system which enables global roaming service through the Internet or other public networks, It can be used to guarantee safe and convenient access to a company Intranet or to a home network.

  • PDF

Entity Authentication Scheme for Secure WEB of Things Applications (안전한 WEB of Things 응용을 위한 개체 인증 기술)

  • Park, Jiye;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.394-400
    • /
    • 2013
  • WoT (Web of Things) was proposed to realize intelligent thing to thing communications using WEB standard technology. It is difficult to adapt security protocols suited for existing Internet communications into WoT directly because WoT includes LLN(Low-power, Lossy Network) and resource constrained sensor devices. Recently, IETF standard group propose to use DTLS protocol for supporting security services in WoT environments. However, DTLS protocol is not an efficient solution for supporting end to end security in WoT since it introduces complex handshaking procedures and high communication overheads. We, therefore, divide WoT environment into two areas- one is DTLS enabled area and the other is an area using lightweight security scheme in order to improve them. Then we propose a mutual authentication scheme and a session key distribution scheme for the second area. The proposed system utilizes a smart device as a mobile gateway and WoT proxy. In the proposed authentication scheme, we modify the ISO 9798 standard to reduce both communication overhead and computing time of cryptographic primitives. In addition, our scheme is able to defend against replay attacks, spoofing attacks, select plaintext/ciphertext attacks, and DoS attacks, etc.