• Title/Summary/Keyword: 세라믹 막

Search Result 406, Processing Time 0.022 seconds

Synthesis of Nanocrystalline Diamond Film by Hot Filament CVD Method (Hot Filament CVD 방법을 이용한 Nanocrystalline Diamond 박막 합성)

  • 강민식;이욱성;백영준;채기웅;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.34-38
    • /
    • 2001
  • Hot filament CVD 방법에서 가스압을 증가시키는 방법을 사용하여 nanocrystalline 다이아몬드 막을 합성하였다. 메탄-수소 혼합가스를 사용하고 메탄함량, 유량, 기판온도합성시간은 각각 4%, 100sccm, 110$0^{\circ}C$, 10시간으로 일정하게 유 였다. 합성 변수로서 가스압을 40 Torr에서 300 Torr 구간에서 변화시켰다. High-resolution SEM으로 막 표면의 형상을 관찰하고, TEM, XRD, micro-Raman spectroscopy를 사용하여 합성된 막의 구조 및 특성을 분석하였다. 합성된 다이아몬드 막은 압력이 높아짐에 따라 mocrocrystalline 다이아몬드 막에서 점진적으로 nanocrystalline 다이아몬드 막으로 변화해갔으며, 가스압에 다라 비다이아몬드 상의 량이 증가하였다. 증착속도는 microcrystalline 다이아몬드 막이 형성되는 구간에서는 압력에 따라 1.1~1.3 $\mu\textrm{m}$/h까지 증가하다가 nanocrystalline 다이아모느 막이 형성되는 구간에서는 압력에 따라 감소하였다. 감소하였다.

  • PDF

Preparation of Organic/Inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation (Siloxane 유-무기 복합막 제조와 투과증발법을 이용한 Acetone-Butanol-Ethanol (ABE) 용액에서 부탄올의 분리)

  • Jee, Ki Yong;Lee, Yong Taek
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.580-586
    • /
    • 2013
  • In this paper, polymer composite membranes and ceramic composite membranes were prepared in order to compare differences in pervaporation performances relative to the support layers. PVDF was used for the polymer support layers, and $a-Al_2O_3$ was used for the ceramic support layers. For active layer was coated for PDMS, which is a rubbery polymer. The characterization of membranes were analysed by SEM, contact angle, and XPS. We studied performances relative to the composite membrane support layers in the ABE mixture solutions. The results of the pervaporation, the flux of the ceramic composite membrane was shown to be $250.87g/m^2h$, which was higher than that of polymer composite membranes, at $195.64g/m^2h$. However, it was determined that the separation factor of the polymer composite membranes was 31.98 which were higher than that of the ceramic composite membranes, at 20.66.

A Review on Ceramic Based Membranes for Textile Wastewater Treatment (염색폐수의 처리를 위한 세라믹 분리막에 대한 고찰)

  • Kwak, Yeonsoo;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.100-108
    • /
    • 2022
  • Among various industries, the textile industry uses the largest amount of water for coloring textiles which leads to a large amount of wastewater containing various kinds of dye. There are various methods for the removal of dye such as flocculation, ozone treatment, adsorption, etc. But these processes are not much successful due to the issue of recycling which enhances the cost. Alternatively, the membrane separation process for the treatment of dye in wastewater is already documented as the best available technique. Polymeric membrane and ceramic membrane are two separate groups of separation membranes. Advantages of ceramic membranes include the ease of cleaning, long lifetime, good chemical and thermal resistance, and mechanical stability. Ceramic membranes can be prepared from various sources and natural materials like clay, zeolite, and fly ash are very cheap and easily available. In this review separation of wastewater is classified into mainly three groups: ultrafiltration (UF), microfiltration (MF), and nanofiltration (NF) process.

Electrochemical Characteristics of the MFCs using the Ceramic Membrane as a Separator (세라믹막을 이용한 미생물연료전지의 전기화학적 특성 연구)

  • Lim, Ji-Young;Park, Dae-Seok;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5728-5735
    • /
    • 2015
  • This study attempts to verify the applicability of ceramic membrane as a separator by comparing the power generation characteristics in single-chamber MFCs using ceramic membranes to those in the MFCs using nafion membrane. The generated power in MFCs by using acetate as a substrate was more stable than that by using formate, propionate and butyrate, respectively. It was shown that the generated power by using formate substrate in MFCs was unstable and a little higher than that by using acetate, and the power generated by using propionate and butyrate were lower than that by using acetate. In order to find out the Pt catalyst effect, it was compared the power generated in MFCs using Pt-coated carbon cloth as electrode to that power using normal carbon cloth. The power generated in MFCs using Pt-coated carbon cloth as electrode was 1.2 times higher than that using normal carbon cloth. The Pt-coated carbon cloth was about 5 times more expensive than normal carbon cloth. It is suggested that both power generation efficiency and cost together should be considered in selecting electrodes of MFCs. It was found that the ceramic membrane was superior to nafion membrane by comparing to the power generation characteristics obtained. It was shown that average voltage values were $523.67mV{\pm}49.41mV$ by using synthetic wastewater, in MFCs of ceramic membrane as a separator. While average voltage values were $424.09mV{\pm}79.95mV$ by using synthetic wastewater, in MFCs of nafion membrane as a separator. The organic removal efficiency, 41.7% by using ceramic membrane was a little bit higher than 40.8% by using nafion membrane. This research implies ceramic membrane can be a valid alternative to nafion membrane as a separator when considering the power generation and the efficiency of organics removal.

Effect of WSi$_2$ Gate Electrode on Thin Oxide Properties in MOS Device (MOS 소자에서 WSi$_2$ 게이트 전극이 Thin Oxide 성질에 미치는 영향)

  • 박진성;이현우;김갑식;문종하;이은구
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.259-263
    • /
    • 1998
  • WSi2/CVD-Si/SiO2/Si-substrate의 폴리사이드 구조에서 실리콘 증착 POCl3 확산 그리고 WSi2 증착 유무에 따른 Thin oxide 특성을 연구했다 WSi2 막을 증착하지 않은 CVD-Si/SiO2/Si-substrate 구조에서 CVD-Si을 po-lycrystalline-Si으로 증착한 시편이 amorphous-Si을 증착한 시편보다 산화막 불량이 적다 WSi2 를 증착시킨 WSi2/CVD-Si/SiO2./Si-substrate의 구조에서 CVD-Si의 polycrystalline-Si 혹든 amorphous-Si 의 막 증착에 따른 thin oxide의 불량율 차이는 미미하다 산화막 불량은 CVD-Si에 확산시킨 인(P) 증가 즉 면저항(sheet resistance) 감소로 증가한다. Thin oxide의 절연특성은 WSi2 증착으로 저하된다 WSi2 증착으로 산화막 두께는 증가하나 막 특성은 열등해져 산화막 절연성이 떨어진다.

  • PDF

Ceramic based Nanofiltration Membrane for Wastewater Treatment: A Review (폐수처리를 위한 세라믹계 나노여과막: 리뷰)

  • Yeonsoo, Kwak;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.390-400
    • /
    • 2022
  • Nanofiltration (NF) membranes are more popular than reverse osmosis (RO) membranes as they can be operated at much lower pressures for applications in treatment of wastewater from industries like food processing and pharmaceutical as well as municipal sewage water. The separation mechanism in case of NF membranes is based on solution diffusion as well as sieving, for which the crosslinking density of the thin film of the composite membrane is less then RO membrane. Unlike ceramic membranes, membrane fouling is one of the chronic problems that occur during the nanofiltration process in polymeric membranes. Membrane cleaning is done to get rid of reversible as well as irreversible fouling by treatment with sodium hypochlorite. Compared to polymeric membranes, ceramic membranes show higher stability against these agents. In this review different types of ceramic membrane applied wastewater treatment by NF process are discussed.

Recovery of Caustic Soda in Textile Mercerization by Combined Membrane Filtration (복합 막분리 공정에 의한 섬유가공 공정에서의 가성소다 회수)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Cho, Jin-Ku;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1273-1280
    • /
    • 2008
  • This study sought to establish the optimum operating condition for the recovery of caustic (NaOH) solution from mercerization in textile process. As main factors, the silt density index (SDI) evaluation of ceramic membrane for the application of nanofiltration/reverse osmosis (NF/RO) membrane, the recovery yield measurement of caustic solution for the application of polymeric membrane, the optimum condition of chemical cleaning for the membrane regeneration, the optimum removal condition of total organic carbon (TOC), turbidity, color, and the permeate flux of ceramic membrane/polymeric membrane combined process were investigated. As results, ceramic ultrafiltration (UF) in the first step and nanofiltration (NF) in the second step were found to be suitable for the removal of total suspended solid (TSS), residual organics, turbidity including color, and the recovery of caustic solution from caustic wastewater stream in mercerization process. When only the ceramic UF membrane was used, the rejection efficiency of both of TSS and turbidity was more than 99.0%, and the color and TOC were rejected about 74.7% and 49.2%, respectively. Meanwhile, the combined membrane precess of UF and NF membranes showed even more efficient removal abilities and thus more than 99.9% of TSS and turbidity, 87.7% of color, and 78.2% of TOC were removed. In particular, 91.3% of NaOH was successfully recovered with 83.7% of total volume in the combined membrane process. With this regard, a clean caustic solution was obtained in a high purity, which can be reused for mercerization process, expecting to offer economical benefits.