• Title/Summary/Keyword: 세라믹공구

Search Result 61, Processing Time 0.018 seconds

On the Experimental Study about Cutting Resistance of TiN Coated Ceramic Tools (TiN 피복 세라믹공구의 절삭저항에 관한 실험적 연구)

  • 이명재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.307-314
    • /
    • 1999
  • By using AIP(Arc Ion Plating) of a physical vapor deposition for the first time in Korea a ceramic tool whose surface is coated single layeredly with TiN is developed. In addition, cutting resistance appearing in the process of finishing cut of hardened carbon tool steel, STC3 is studied. The principal and radial components of cutting resistance in those cutting conditions appear to be the same or similar, and the feed component is relatively small. The feed component is found to be in proportion to cutting width, and the radial component in proportion to cutting thickness. Owing to coating the cutting resistance of a TiN coated ceramic tool increases compared with that of a general ceramic tool.

  • PDF

Turning of Plastic Mold Steel(STAVAX) using Whisker Reinforced Ceramic (단침보강 세라믹 공구를 이용한 플라스틱 금형강(STAVAX)의 선삭가공)

  • Bae, Myung-Il;Lee, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.36-41
    • /
    • 2012
  • In this study, we turning plastic mold steel (STAVAX) against cutting speed, depth of cut, feed rate using whisker reinforced ceramic tool (WA1). To predict cutting force, analyze principal, radial, feed force with multi-regression analysis. Results are follows: From the analysis of variance, affected factor to cutting force feed rate, depth of cut, cutting speed in order and cutting speed was very small affect to cutting force. From multi-regression analysis, we extracted regression equation and the coefficient of determination$(R^2)$ was 0.9, 0.88, 0.856 at principal, radial and feed force. It means regression equation is significant. From the experimental verification, it was confirmed that principal, radial and feed force was predictable by regression equation.

A Study on the Machinability of Fine Ceramics (($Al_2O_3$)) (파인 세라믹 ($Al_2O_3$)의 被削性에 관한 硏究)

  • 김성겸;이용성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.604-610
    • /
    • 1989
  • This paper is concerned with the machinability of fine ceramics(Al$_{2}$O$_{3}$) by using sintered diamond tools. For this purpose, ceramics cutting experiments under various cutting conditions such as cutting speed, feed rate, and others were carried out. The main results are follows : (1) During the cutting of fine ceramics, the used tools were found to be slightly chattering at cutting speed of 70m/min, and at cutting speed of higher than this I found the fine ceramics difficult to be cut. (2) When I used a tool with large nose radius, there occured a small amount of wear on the flank of the tool. However, at the early stage of fine ceramics cutting, the tools with smaller nose radii were required mainly to prevent the chipping of the ceramics. (3) When the materials were dry-cut, the appropriate cutting speel was found to be lower than 40m/min, and when the materials were dry-cut, I could cut them without any difficulty even at the speed of 70m/min, the surface roughness of ceramics cut at the speed of 70m/min was considerly fine. (4) It is generally believed that the principal cutting force is the largest in the case of steels cutting, but I found the thrust cutting force to be larger than any other cutting forces in the case of ceramics cutting.

A Study on the Micro Machining Technology of Mold and Die (미세 절삭에 의한 금형 가공기술 개발)

  • Lee E. S.;Je T. J.;Lee S. W.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.231-238
    • /
    • 2002
  • 미세 절삭에 의한 마이크로 형상가공 및 이를 이용한 미세금형 가공기술개발을 위하여 절삭 공구를 이용한 기계적 미세 가공법에 대한 고찰과 더불어 shaping, end-milling, drilling 등의 가공이 가능한 기계적 미세 가공시스템을 구성하고 이를 이용한 미세 치형 그루브와 미세 격벽 등 미세 형상 구조의 금형 개발을 위한 가공실험을 수행하였다. 본 실험에서는 먼저 shaping 방식으로 세 종류의 다이아몬드 바이트를 사용하여 알루미늄, PMMA, Nickel, 황동 등의 소재에 pitch $150{\mu}m$, 높이 $8{\mu}m$ 내외의 미세 치형의 금형 코어를 가공하였고, 다음으로 Z축에 air spindle을 설치하여 $\phi0.2mm$의 end-mill(WC)을 사용하여 황동 소재에 깊이 $200{\mu}m$, 폭 $200{\mu}m,\;100{\mu}m,\;50{\mu}m,\;30{\mu}m$의 두께 변화를 주어 미세 격벽에 대한 가공실험을 하였다. 미세 구멍가공실험으로는 drilling 전용장비를 구성하여 $\phi0.6\~0.15mm$의 drill공구로 SM45C와 세라믹$(Si_3N_4-BN)$ 소재에 스텝이송방식에 의한 미세 구멍 가공 실험을 실시하였다.

  • PDF

Machinability of ceramic and WC-Co green compacts (세라믹 및 초경합금 성형체의 피절삭성)

  • Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1520-1530
    • /
    • 1997
  • Machining pressed compacts of ceramic and WC-Co materials can be the most cost effective way of forming the bodies prior to sintering when the required number of pieces is small. In this study, in order to clarify the machinability for turning, the $Si_3N_4$ and the WC-Co green compacts unsintered were machined under different cutting conditions with various tools. Absorbing chips by vacuum hose decreases tool wear. The tool wear becomes larger in the order of the ceramic, CBN and cemented carbide tools in machining the $Si_3N_4$ green compacts. In machining the WC-Co green compacts, the tool wear becomes larger in the order of the ceramic, cemented carbide and CBN tools. The land of cutting edge does not affect tool wear. When machining with cemented carbide tool, the tool wear i equal cutting length is nearly identical in spite of the increase of cutting spee, and the roughness of machined surface was the best in the cutting speed of 90 m/min. The tool wear decreases with the increase of rake angle and relief angle and with the decrease of nose radius. The machined surfaces become worse with the increase of feed rate and depth of cut, and with the decrease of rake angle and relief angle. The tool wear is not affected by the feed and depth of cut.

Extract to Affected Factor to Surface Roughness and Regression Equation in Turning of Mold Steel(SKD61) by Whisker Reinforced Ceramic Tool (단침보강세라믹공구를 이용한 금형강(SKD61)의 선삭가공 시 표면거칠기에 영향을 미치는 인자 및 회귀방정식 도출)

  • Bae, Myung-Il;Rhie, Yi-Seon;Kim, Hyeung-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.118-124
    • /
    • 2012
  • In this study, we turning mold steel (SKD61) using whisker reinforced ceramic tool (WA1) to get affected factor to surface roughness and regression equation. For this study, we adapt system of experiments. Results are follows; From the analysis of variance, it was found that affected factor to surface roughness was feed rate, cutting speed, depth of cut in order. From multi-regression analysis, we calculated regression equation and the coefficient of determination($R^2$). $R^2$ was 0.978 and It means regression equation is significant. Regression equation means if feed rate increase 0.039mm/rev, surface roughness will increase $0.8391{\mu}m$, if cutting speed increase 50m/min, surface roughness will decrease $0.034{\mu}m$, if depth of cut increase 0.1mm, surface roughness will increase $0.0203{\mu}m$. From the experimental verification, it was confirmed that surface roughness was predictable by system of experiments.

Machinability of Presintered $Al_2O_3$ ceramics (알루미나 세라믹 예비소결제의 피절삭성)

  • Kim, Sung-Chung;Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.1002-1012
    • /
    • 1997
  • When the presintered ceramics are machined with ceramic tool, the tool life becomes extremely short. The CBN tool exhibits the best performance in dry machining of the ceramics presintered at $1450^{\circ}C$ among all cutting tests. The roughness of the machined surface of the ceramics presintered below $1350^{\circ}C$ is smaller than that of the ceramics presintered at $1450^{\circ}C$ While the performance of the cemented carbide and CBN tools is better in dry than in wet machining, the diamond tool shows adverse tendency. The tool life is not affected by the feed rate and depth of cut. During the following full-sintering after the machining of the presintered ceramics, the surface roughness decreases up to 62%. The finished surface in machining the presintered ceramics is much better than that in machining the full-sintered ceramic.

A Study on the Wearing Behavior of Diamond Tool used to Machining of Ceramics (세라믹스 가공용 다이아몬드 공구 마모에 관한 연구)

  • Park, Sang-Hee;Kim, Kwang-Min;Choi, Seong-Dae;Hong, Young-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • In this study, coring with diamond core drill on the sintered $Al_2O_3$ ceramic plate were carried out with different coring conditions such as various cutting speed and feed rate to evaluate their effectiveness on the wearing behavior of diamond tool and coring quality. The wearing rate of diamond core drill were getting better with increasing cutting speed and feed rate but the quality of cored hole were getting worse as increasing cutting speed and feed rate.

Wear Patterns and Mechanisms of Cutting Tool in Cutting of Machinable Ceramics (가공성 세라믹 절삭에서 공구의 마멸 패턴과 메카니즘)

  • Jang, Sung-Min;Baek, Seung-Yub
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.1-6
    • /
    • 2010
  • When the ceramic material is being machined, micro crack and brittle fracture dominate the process of material removal. Generally, ceramics are very difficult-to-cut materials and machined using conventional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Machinable ceramics used in this study contain BN powder to overcome these problem and for productivity elevation. This paper focuses on machinability evaluation during end mill process with CNC machining center in this study. Experiment for this purpose is performed for tool wear patterns and mechanism.

Presumption on Wear life of TiN Film (TiN 경질박막의 마모 수명 예측에 관한 연구)

  • 정기훈;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.41-46
    • /
    • 1997
  • TiN 코팅은 마모에 대한 저항성 및 고체 윤활 효과가 매우 우수하여 내마모성 및 저마찰이 요구되는 절삭공구나 피스톤 베어링 및 각종 축계의 코팅막으로 사용이 증가되고 있다. 일반적으로 재료의 경도와 인성은 서로 상반 관계를 갖고 있어 공학적으로 경도와 인성을 모두 요구하는 표면을 얻기 위해 연질 모재 위의 세라믹 코팅은 그 요구를 만족시킬 수 있는 가장 각광받는 표면처리 방법중의 하나이다. 그러나, TiN과 같은 경질 박막의 공학적 적용시 가장 요구되는 마모수명은 모재의 조도나 경도, 증착 방법, 접촉 상태, 코팅막의 두께 및 마모의 발생 기구 등에 따라 마찰 및 마모 메커니즘의 현저한 차이를 나타내기 때문에 예측이 거의 불가능한 실정이고, 아직까지 이러한 마모수명 비교 평가방법에 대한 기준 설정 및 정량적 정립이 이루어지지 않고 있다. 본 연구에서는 모재의 경도, 조도, 코팅 두께가 다른 TiN 경질 박막에 압입시험과 스크래치시험시 발생되는 균열 발생 메커니즘과 미끄럼 시험시 발생되는 마모 메커니즘의 연계성을 밝히고 압입 및 스크래치 시험시 코팅막이 손상되는 임계하중과 미끄럼 시험시 접촉하중 변화에 따른 마모수명의 정량적 연관성을 찾아보고자 한다.

  • PDF