• Title/Summary/Keyword: 세균 군집구조

Search Result 116, Processing Time 0.027 seconds

Changes in Resident Soil Bacterial Communities in Response to Inoculation of Soil with Beneficial Bacillus spp. (유용한 바실러스의 토양 접종에 따른 토착 세균 군집의 변화)

  • Kim, Yiseul;Kim, Sang Yoon;An, Ju Hee;Sang, Mee Kyung;Weon, Hang-Yeon;Song, Jaekyeong
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.253-260
    • /
    • 2018
  • Beneficial microorganisms are widely used in the forestry, livestock, and, in particular, agricultural sectors to control soilborne diseases and promote plant growth. However, the industrial utilization of these microorganisms is very limited, mainly due to uncertainty concerning their ability to colonize and persist in soil. In this study, the survival of beneficial microorganisms in field soil microcosms was investigated for 13 days using quantitative PCR with B. subtilis group-specific primers. Bacterial community dynamics of the treated soils were analyzed using 16S ribosomal RNA (rRNA) gene amplicon sequencing on the Illumina MiSeq platform. The average 16S rRNA gene copy number per g dry soil of Bacillus spp. was $4.37{\times}10^6$ after treatment, which was 1,000 times higher than that of the control. The gene copy number was generally maintained for a week and was reduced thereafter, but remained 100 times higher than that of the control. Bacterial community analysis indicated that Acidobacteria ($26.3{\pm}0.9%$), Proteobacteria ($24.2{\pm}0.5%$), Chloroflexi ($11.1{\pm}0.4%$), and Actinobacteria ($9.7{\pm}2.5%$) were abundant phyla in both treated and non-treated soils. In the treated soils, the relative abundance of Actinobacteria was lower, whereas those of Bacteroidetes and Firmicutes were higher compared to the control. Differences in total relative abundances of operational taxonomic units belonging to several genera were observed between the treated and non-treated soils, suggesting that inoculation of soil with the Bacillus strains influenced the relative abundances of certain groups of bacteria and, therefore, the dynamics of resident bacterial communities. These changes in resident soil bacterial communities in response to inoculation of soil with beneficial Bacillus spp. provide important information for the use of beneficial microorganisms in soil for sustainable agriculture.

Microbial Diversity of the Trichloroethylene Contaminated Groundwater Treatment System and Characterization of Pseudomonas sp. DHC8 (Trichloroethylene으로 오염된 지하수 제거공정의 미생물 다양성 및 분리균주 Pseudomonas sp. DHC8의 특성)

  • Nam, Ji-Hyun;Shin, Ji-Hye;Kwon, Kiwook;Bae, Wookeun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.336-342
    • /
    • 2013
  • Trichloroethylene (TCE) is a widely used substance in commercial and industrial applications, yet it must be removed from the contaminated soil and groundwater environment due to its toxic and carcinogenic nature. We investigated bacterial community structure, dominant bacterial strain, and removal efficiency in a TCE contaminated groundwater treatment system using immobilized carrier. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library. The major bacterial population of the contaminated groundwater treatment system was belonging to BTEX degradation bacteria. The bacterial community consisted mainly of one genus of Pseudomonas (Pseudomonas putida group). The domination of Pseudomonas putida group may be caused by high concentration of toluene and TCE. Furthermore, we isolated a toluene and TCE degrading bacterium, named Pseudomonas sp. DHC8, from the immobilized carrier in bioreactor which was designed to remove TCE from the contaminated ground water. Based on the results of morphological and physiological characteristics, and 16S rRNA gene sequence analysis, strain DHC8 was identified as a member of Pseudomonas putida group. When TCE (0.83 mg/L) and toluene (60.61 mg/L) were degraded by this strain, removal efficiencies were 72.3% and 100% for 12.5 h, respectively. Toluene removal rate was 2.89 ${\mu}mol/g$-DCW/h and TCE removal rate was 0.02 ${\mu}mol/g$-DCW/h. These findings will be helpful for maintaining maximum TCE removal efficiency of a reactor for bioremediation of TCE.

Characteristics of ecological structure and spatial distribution of micro-plankton in relation to water masses in the northern East China Sea(nECS) in summer 2019 (2019년 여름 동중국해 북부해역의 수괴 분포에 따른 미소플랑크톤의 공간분포 및 생태구조 특성)

  • Yoon, Yang Ho;Park, Ji Hye;Lee, Hyeon Ji;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.355-370
    • /
    • 2020
  • We conducted a field survey to analyze the ecological structure and spatial distribution of microplankton (phytoplankton and ciliates) in relation to water masses at 21 stations on the surface and chlorophyll-a maximum layers (CML) in the Northern East China Sea (nECS; 32°-33°N; 124°00'-127°30'E) from August 3 to August 6, 2019. The results showed that the water masses were divided into Chinese Coastal Waters (CCW) and the Tsushima Warm Current (TWC). The CCW showed the environmental characteristics of high temperature and low salinity, and the TWC showed high temperature and high salinity. The characteristics of the phytoplankton community in the CCW showed various community structures related to the nutrients supplied from the large rivers of the Chinese continent. However, the TWC had simple community structures because it originated near the equator and moved northward. The standing crops of phytoplankton and ciliates were very high in the CCW but showed low at the TWC. In particular, from the higher standing crops of protozoa than plant plankton at the TWC, the energy flow at the lower tropic levels caused by the microbial loop that fed on heterotrophic bacteria played an important role in the production of resource organisms. In other words, the marine ecological structure of the nECS in summer could be estimated as a bottom-up system at the CCW and a top-down system at the TWC.

Dynamics of Bacterial Communities Analyzed by DGGE during Cyanobacterial Bloom in Daechung Reservoir, Korea (대청호 수화발생시기의 미생물 다양성 및 계통분류학적 분석)

  • Ko, So-Ra;Ahn, Chi-Yong;Lee, Young-Ki;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.225-235
    • /
    • 2011
  • The change of microbial communities during cyanobacterial bloom was comparatively analyzed by 16S rDNA PCR-DGGE in Daechung Reservoir during 2003~2005. Morphological analysis showed that Cyanophyceae dominated algal community in the bloom. Dominant cyanobacteria were Microcystis, Planktothrix (Oscillatoria), Phormidium and Anabaena. We used 16S rDNA-denaturing gradient gel electrophoresis (DGGE) profiles and phylogenetic affiliations of the DGGE bands to analyze the community structure and diversity of the predominant microbial community. The DGGE band patterns demonstrated that the most frequent bands were identified as Microcystis during the monitoring periods, Planktothrix also dominated on September 2003 and 2004, whereas Anabaena was showed a peak on September 2005 and Aphanizomenon on August 2003. DGGE and phylogenetic analysis provided us new information that could not be obtained by traditional, morphological analysis. The relationship between cyanobacteria and other aquatic bacteria can be traced and their genetic diversity also identified in detail.

The Interactive Effect of These Bacterial Substrates on the Growth of Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis (Streptococcus gordonii, Fusobacterium nucleatum 및 Porphyromonas gingivalis의 상호작용이 성장에 미치는 영향)

  • Kim, A-Reum;Jeong, Moon-Jin;Ahn, Yong-Soon;Kim, Mi-Na;Kim, Sung-Im;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.15 no.2
    • /
    • pp.209-219
    • /
    • 2015
  • In order to explore an effect of interaction of Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis that are bacteria relevant to periodontal disease on its growth, the bacteria were incubated in trypticase soy hemin menadione broth at $37^{\circ}C$ $CO_2$ incubator for 7 days through anaerobic jar by single and co-culture with heat treated dead bacteria under anaerobic gas pack. In order to confirm growth level, absorbance was measured and for confirming colony structure and form, it was observed with scanning electron microscope. In order to confirm an effect on pathogenicity of P. gingivalis, real time reverse transcriptase polymerase chain reaction was implemented for expression analysis for rgpA gene that produces HRgpA which is gingipain. As a result, the following conclusion was obtained. Colony formation of S. gordonii and P. gingivalis was increased by other dead bacteria and in case of F. nucleatum, its colony formation was showed an aspect of being increased by dead bacterium of P. gingivalis but decreased by dead bacterium of S. gordonii. Therefore, it is considered that the strains being used for this study would affect interactively through bacterial cell itself as well as their interaction factor at the time of colony formation.

The Characteristics of Microbial Community for Biological Activated Carbon in Water Treatment Plant (생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성)

  • Son, Hee-Jong;Park, Hong-Ki;Lee, Soo-Ae;Jung, Eun-Young;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1311-1320
    • /
    • 2005
  • The purpose of this research is to survey characteristics of microbial community and the removal efficiency of organic materials for biological activated carbon in water treatment plant. Coal based activated carbon retained more attached bacterial biomass on the surface of the activated carbon than the other activated carbon with operating time and materials. The heterotrophic plate count(HPC), eubacteria(EUB) and 4,6-diamidino-2-phenylindole(DAPI) counts were ranged from $0.95{\times}10^7$ to $52.4{\times}10^7$ CFU/g, from $3.8{\times}10^8$ to $134.2{\times}10^8$ cells/g and from $7.0{\times}10^8$ to $250.2{\times}10^8$ cells/g, respectively. The biomass of EUB and DAPI appeared to be much more $10^2$ than HPC, which were increasing in bed volume of 20,000 at the stage of steady-state. The change of microbial community by analyzing fluorescent in situ hybridization(FISH) method with rRNA-targeted oligonucleotide probes, the dominant group was $\alpha$-proteobacteria($\alpha$ group) and high G+C content bacteria(HGC) the lowest distributing rate before reaching the bed volume of 20,000. After reaching the bed volume of 20,000, $\alpha$ group and other groups of bacteria became decreased, on the other hand, the proportion of both $\beta$-proteobacteria($\beta$ group) and $\gamma$-proteobacteri($\gamma$ group) were increasing. Coconut and wood based activated carbons had similar trend with coal based activated carbon, but the rate of $\alpha$ group on coal based activated carbon had gradually increased. Bacterial production with the operating period appeared highest in coal based activated carbon at the range of $1.2{\sim}3.4\;mg-C/m^3{\cdot}h$ while the coconut and wood based activated carbon were ranged from 1.1 to 2.6 $mg-C/m^3{\cdot}h$ and from 0.7 to 3.5 $mg-C/m^3{\cdot}h$ respectively. The removal efficiency of assimilable organic carbon(AOC) showed to be highly correlated with bacterial production. The correlation coefficient between removal efficiency of AOC and bacterial production were 0.679 at wood based activated carbon, 0.291 at coconut based activated carbon and 0.762 at coal based activated carbon, respectively.

Characterization and Composition of Ammonia-Oxidizing Bacterial Community in Full- Scale Wastewater Treatment Bioreactors (실규모 하수처리 생물반응기에서 발견되는 암모니아산화균 군집조성 및 특징)

  • Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.112-118
    • /
    • 2009
  • Ammonia-oxidizing bacteria (AOB) are chemolithoautotrophs that play a key role in nitrogen removal from advanced wastewater treatment processes. Various AOB species inhabit and their community compositions vary over time in the wastewater treatment bioreactors. In this study, a hypothesis that operational and environmental conditions affect both the community compositions and the diversity of AOB in the bioreactors was proposed. To verify the hypothesis, the clone libraries based on ammonia monooxygenase subunit A were constructed using activated sludge samples from aerobic bioreactors at the Pohang, the Palo Alto, the Nine Springs, and the Marshall wastewater treatment plants (WWTPs). In those bioreactors, AOB within the Nitrosomonas europaea, N. oligotropha, N.-like, and Nitrosospira lineages were commonly found, while AOB within the N. communis, N. marina, and N. cryotolerans lineages were rarely detected in the samples. The AOB community structures were different in the bioreactors: AOB within the N. oligotropha lineage were the major microorganisms in the Pohang, the Palo Alto, and the Marshall WWTPs, while AOB within the N. europaea lineage were dominant in the Nine Springs WWTP. The correlations between the AOB community compositions of the wastewater treatment bioreactors and their operational (HRT, SRT, and MLSS) and environmental conditions (temperature, pH, COD, $NH_3$, and $NO_3{^-}$) were evaluated using a multivariate statistical analysis called the Redundancy Analysis (RDA). As a result, COD and $NO_3{^-}$ concentrations in the bioreactors were the statistically significant variables influencing the AOB community structures in the wastewater treatment bioreactors.

Efficiency of Different Disinfectants against Biofilm on Carbon Steel Pipe and Carbon Utilizing Ability of Biofilm (소독제에 따른 생물막 살균효율과 생물막 미생물집단의 탄소이용능 비교)

  • Lee, Dong-Geun;Lee, Jae-Hwa;Lee, Sang-Hyeon;Ha, Bae-Jin;Ha, Jong-Myung
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.579-583
    • /
    • 2006
  • The influence of disinfectant on bacterial concentration and carbon usage patterns by Biolog GN plates were investigated for biofilm on carbon steel pipe. Heterotrophic bacterial concentrations were not different among non-, monochloramine- (1.0, 1.5 mg/l) and free chlorine- (0.5, 1.0 mg/l) treated samples (P = 0.56, ANOVA). However treatment of 1.5 mg/l free chlorine and 2.0 mg/l monochloraime showed significantly lower densities than control (P < 0.01, ANOVA). By the stepwise increasement of disinfectant concentration, the carbon usage activities of biofilm microflora were decreased after increase without the decrease of bacterial concentration, following reduction of cell density. Carbon usage patterns were qualitatively and quantitatively different with similar bacterial concentrations. Principal component analysis suggested that type and concentration of disinfectant were main factors on the usage of carbons. Our result suggest that the differences of bacterial communities were different among the samples and the need of monochloramine for the reduction of biofilm in drinking water.

Comparison of Phylogenetic Characteristics of Viable but Non-Culturable (VBNC) Bacterial Populations in the Pine and Quercus Forest Soil by 16S rDNA-ARDRA (16S rDNA-ARDRA법을 이용한 소나무림과 상수리나무림 토양 내 VBNC 세균군집의 계통학적 특성 비교)

  • Han Song-Ih;Kim Youn-Ji;Whang Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.116-124
    • /
    • 2006
  • In this study was performed to analyze quantitatively the number of viable but non-culturable bacteria in the Pine and Quercus forest soil by improved direct viable count (DVC) and plate count (PC) methods. The number of living bacteria of Pine and Quercus forest soil by PC method were less then 1% of DVC method. This result showed that viable but non-culturable (VBNC) bacteria existed in the forest soil with high percentage. Diversity and structure of VBNC bacterial populations in forest soil were analyzed by direct extracting of DNA and 16S rDNA-ARDRA from Pine and Quercus forest soil. Each of them obtained 111 clones and 108 clones from Pine and Quercus forest soil. Thirty different RFLP types were detected from Pine forest soil and twenty-six different RFLP types were detected from Quercus forest soil by HeaIII. From ARDRA groups, dominant clones were selected for determining their phylogenetic characteristics based on 16S rDNA sequence. Based on the 16S rDNA sequences, dominant clones from ARDRA groups of Pine forest soil were classified into 7 major phylogenetic groups ${\alpha}$-proteobacteria (12 clones), ${\gamma}$-proteobacteria (3 clones), ${\delta}$-proteobacteria (1 clone), Flexibacter/Cytophaga (1 clone), Actinobacteria (4 clones), Acidobacteria (4 clones), Planctomycetes (5 clones). Also, dominant clones from ARDRA groups of Quercus forest soil were classified into 6 major phylogenetic groups : ${\alpha}$-proteobacte,ia (4clones), ${\gamma}$-proteobacteria (2 clones), Actinobacteria (10 clones), Acidobacteria (8 clones), Planctomycetes (1 clone), and Verrucomicobia (1 clone). Result of phylogeneric analysis of microbial community from Pine and Quercus forest soils were mostly confirmed at uncultured or unidentified bacteria, VBNC bacteria of over 99% existent in forest soil were confirmed variable composition of unknown micro-organism.

Characterization of Bacterial Community in the Ecosystem Amended with Phenol (페놀이 첨가된 생태계에서 세균 군집구조 변화의 분석)

  • 김진복;김치경;안태석;송홍규;이동훈
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.72-79
    • /
    • 2001
  • The effect of phenol on the change of bacterial community in the effluent water from a wastewater treatment plant was analyzed by PCR and terminal restriction fragment length polymorphism (T-RFLP). The fragments of 16S rDNA were amplified by PCR with bacterial primers, where one of the primers was biotinylated at the 5'-end. After digestion with restriction enzymes, HaeIII and AluI, the biotinylated terminal restriction tragments (T-RFs) of the digested products were selectively isolated by using streptavidin paramagnetic particles. The single-stranded DNA of T-RFs was separated by electrophoresis on a polyacrylamide gel and detected by silver staining technique. When 10 standard strains were analyzed by our method, each strain had a unique T-RF which corresponded to the calculated size from the known sequences of RDP database. The T-RFLP fingerprint generated from the effluent water was very complex, and the predominant T-RFs corresponded to members of the genus Acinetobacter, Bacillus and Pseudomonas. In addition, the perturbation of bacterial community was observed when phenol was added to the sample at the final concentration of 250 $l^{-1}$. The number of T-RFs increased and the major bacterial population could be assigned to the genus Acinetobacter, Comamonas, Cytophaga and Pseudomonas. A intense band assigned to the putative genera of Acinetobacter and Cytophaga was eluted, amplified, and sequenced. The nucleotide sequence of the T-RF showed close relationship with the sequence of Acinetobacter junii.

  • PDF