• Title/Summary/Keyword: 세공량

Search Result 122, Processing Time 0.027 seconds

Use-friendly Active Packaging of Powdered Infant Formula in Single-serve Portion Augmented with Anti-oxidative Function (산화억제 가능성과 사용편의성을 가진 일회성 조제분유 포장)

  • Lee, Hye Lim;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.95-99
    • /
    • 2019
  • In the modified atmosphere packaging of powdered infant formula, the oxygen inside the package may cause its quality deterioration and needs to be minimized for quality preservation. A way of oxygen scavenger inclusion in the single-serve package without contacting the product was devised for removing oxygen residing initially and permeating through the seal layer during the storage. A polyethylene/pulp multi-layer porous filter bag of 5 × 7 cm containing 13 g of powdered infant formula was packaged in an 8 × 9 cm size aluminium laminated film package with a Fe-based oxygen scavenger of 1.8 g. After nitrogen flushed packaging, the active packages were stored at 30℃ for 254 days with periodical quality measurement. The active package could remove the initial residual oxygen of 1.4% completely and maintain absence of oxygen for the whole storage, which contributed to reduced oxidation observed in lower product peroxide value compared to that of the product in the control package. There was no influence of packaging treatment on content of 5-hydroxymethylfurfural, reaction product of initial nonenzymatic browning. The devised oxygen-scavenging single-serve package showed a potential to improve the preservation of infant formula powder and extend the shelf life.

Adsorption Characteristics of Commercial Wood Charcoal in Korea (I) (국내 시판용 목탄의 흡착 특성(I))

  • Lee, Dong-Young;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.27-35
    • /
    • 2010
  • To evaluate the basic characteristics and adsorption properties of commercial wood charcoal, we investigated the proximate analysis, porosimetry analysis, methylene blue adsorption, removal ratios of formaldehyde, and removal ratio of ethylene gas. Fixed carbon contents of traditional black and white charcoal, and mechanical charcoal were 51.8~76.6%, 72.9~84.6%, and 48.5~80.3%, respectively. Refining degrees of the most traditional black charcoal were 9, and those of white charcoal and mechanical charcoals were zero. Specific surface area of traditional black charcoal was 0.1~13.7 $m^2/g$, which was quite lower than that of white charcoal (53.2~372.6 $m^2/g$) and mechanical charcoals (224.3~464.6 $m^2/g$). Also, amounts of methylene blue adsorption were quite lower in black charcoal (0.53~1.97 mg/g) compared with white charcoal (2.68~7.68 mg/g) and mechanical charcoal (11.63~26.10 mg/g). Removal ratios of formaldehyde of the black charcoal were 11.4~26.7%, which is quite similar to white charcoal (17.9~34.9%) and mechanical charcoal (5.5~25.8%). Removal ratios of ethylene gas for traditional black charcoal, traditional white charcoal, and mechanical charcoal were 2.2~43.5%, 21.7~39.1%, 21.7~39.1%, respectively. There was no significant difference in the removal ratios of formaldehyde and ethylene gas among traditional black charcoal, traditional white charcoal, and mechanical charcoal.

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon (알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.671-677
    • /
    • 2016
  • The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.

Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(III) (아토마이징 제강슬래그를 충전재와 잔골재로 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • It is known that polymer concretes are 8~10 times more expensive than ordinary Portland cement concretes; therefore, in the production of polymer concrete products, it is very important to reduce the amount of polymer binders used because this occupies the most of the production cost of polymer concretes. In order to develop a technology for the reduction of polymer binders, smooth and spherical aggregates were prepared by the atomizing technology using the oxidation process steel slag (electric arc furnace slag, EAFS) and the reduction process steel slag (ladle furnace slag, LFS) generated by steel industries. A reduction in the amount of polymer binders used was expected because of an improvement in the workability of polymer concretes as a result of the ball-bearing effect and maximum filling effect in case the polymer concrete was prepared using the smooth and spherical atomized steel slag instead of the calcium carbonate (filler) and river sand (fine aggregate) that were generally used in polymer concretes. To investigate physical properties of the polymer concrete, specimens of the polymer concrete were prepared with various proportions of polymer binder and replacement ratios of the atomized reduction process steel slag. The results showed that the compressive strengths of the specimens increased gradually along with the higher replacement ratios of the atomized steel slag, but the flexural strength showed a different maximum strength depending on the addition ratio of polymer binders. In the hot water resistance test, the compressive strength, flexural strength, bulk density, and average pore diameter decreased; but the total pore volume and porosity increased. It was found that the polymer concrete developed in this study was able to have a 19% reduction in the amount of polymer binders compared with that of the conventional product because of the remarkable improvement in the workability of polymer concretes using the spherical atomized oxidation steel slag and atomized reduction steel slag instead of the calcium carbonate and river sand.

Adsorption Properties of the Lysozyme and Albumin with Physicochemical Properties of the Contact Lens (콘택트렌즈의 물리화학적 특성에 따른 라이소자임과 알부민의 흡착 특성)

  • Sung, Yu-Jin;Ryu, Geun-Chang;Jun, Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.261-270
    • /
    • 2013
  • Purpose: Adsorption properties of lysozyme and albumin according to physiochemical properties of commercial contact lens classified with the FDA categories and a contact lens fabricated in the laboratory were investigated. Methods: The contact lens were prepared using HEMA(2-hydroxyethyl methacrylate) and TRIM(3-(trimethoxysilyl) propyl methacrylate) in a cast mold. Artificial tears containing lysozyme and albumin were prepared. We measured the amounts of protein adsorbed on the each lenses with varying adsorbed time (48 hour) and the pH range (6, 6.8, 7.4, 8.2, 9) of artificial tear. Amount of the proteins absorbed on the contact lenses were measured by using HPLC. Results: Time to reach the equilibrium of protein adsorption for silicone hydrogel lens was taken longer than hydrogel lens. The amount of adsorbed both lysozyme and albumin at equilibrium were greater for the hydrogel lens than the silicone hydrogel lens, and larger for the ionic lens than the non-ionic lens. Lysozyme was more adsorbed on the higher water content of contact lens, whereas albumin was more adsorbed on the lower water content of contact lens. Only lysozyme was adsorbed on the Group IV hydrogel lens of ionic higher water content. The adsorption of protein on contact lens increased with pH of artificial tears as close to the isoelectric point of each protein. Conclusions: The adsorption amount of lysozyme is more affected by the ionic strength of the contact lens surface than the water content of contact lens. Albumin adsorption is more affected by water content than the ionic strength of the contact lens surface. For the adsorption of proteins on the silicone hydrogel lens, the pore size, determined both by the number of Si atoms and the chemical structure of the silicone-containing monomers, as well as the polarity of contact lens should be also considered.

Synthesis of LSX Zeolite and Characterization for Nitrogen Adsorption (LSX 제올라이트의 합성 및 질소 흡착 특성)

  • Hong, Seung Tae;Lee, Jung-Woon;Hong, Hyung Phyo;Yoo, Seung-Joon;Lim, Jong Sung;Yoo, Ki-Pung;Park, Hyung Sang
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.160-165
    • /
    • 2007
  • The synthesis and the characterization of Low Silica X (LSX) zeolite for nitrogen adsorption have been studied. The performance of LSX zeolite for nitrogen adsorption was compared to that of the commercial zeolite. The $Na_2O/(Na_2O+K_2O)$ ratio in the gel and the crystallization time were fixed as the synthetic factor. The LSX zeolite was formed at the $Na_2O/(Na_2O+K_2O)$ ratio of 0.75. The formation of LSX zeolite was confirmed by XRD and SEM. The Si/Al ratio was investigated by using XRF and FT-IR. The synthesized LSX zeolite showed a lower Si/Al ratio than the NaY and NaX zeolites although they have a same faujasite structure. The Si/Al ratio of the LSX zeolite converged close to 1. 1A (Li, Na, K) and 2A (Mg, Ca, Ba) group elements were ion-exchanged to the LSX zeolite. As the charge density of cation rises, the amount of nitrogen adsorbed increased. $Li^+$ ion-exchanged LSX zeolite showed the highest nitrogen adsorption weight. When the Li/Al ratio was over 0.65, nitrogen adsorption increased remarkably. $Li^+$ ions located on the supercage (site III, III') in the LSX zeolite played a role as nitrogen adsorption sites. When the $Ca^{2+}$ ions were added to the LiLSX zeolite by ion-exchange method, the performance for nitrogen adsorption increased more. The performance for the nitrogen adsorption was the highest at the Ca/Al ratio of 0.26. Nitrogen adsorption capacity of LiCaLSX (Ca/Al=0.26) zeolite was superior to the commercial NaX zeolite.

Application of Unburned Carbon Produced from Seochun Power Plant (서천화력발전소 매립 석탄재에서 분리한 미연탄소의 재활용 방안)

  • Lee, Sujeong;Cho, Seho;Lee, Young-Seak;An, Eung-Mo;Cho, Sung-Baek
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Feasibility of utilizing unburned carbon residue in coal ash as a potential precursor for the production of activated carbon was assessed to seek for solution to recycle unburned carbon residue. The unburned carbon concentrate generated from the 4 stages of cleaner flotation has a grade of 87% carbon. The crystalline impurities in the concentrate included quartz and mullite. Unburned carbon had a low specific surface area of $10m^2/g$, which might be related to a high degree of coalification of domestic anthracite coal. Carbon particles were mostly porous and have a turbostratic structure. When 1g of carbon was activated with 6g of KOH powder, the highest specific surface area value of $670m^2/g$ was achieved. Low wettability of unburned carbon particles, which was resulted from high temperature combustion in a boiler, might cause poor pore formation when they were activated by KOH solution. The activated carbon produced in this study developed micropores, with an equivalent quality of general-purpose activated carbon made from coal. Hence, it is concluded that chemically treated unburned carbon can be used for water purification or an alternative to carbon black as it is.

A Study on the Performace Evaluation of Antimicrobial Concrete Using Liquid Reinforcing Antibiotics (액상 수밀성 항균제를 사용한 항균 콘크리트의 성능 평가에 관한 연구)

  • Kim, Gyu-Yong;Kim, Moo-Han;Lee, Eui-Bae;Cho, Bong-Suk;Khil, Bae-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.113-120
    • /
    • 2007
  • In this study, researches for the development of antibiotics and antimicrobial concrete were conducted to reduce biochemical corrosion of sewage concrete. First of all, desired performance, such as watertightness, antibiosis, homogeneity, workability and harmlessness, was proposed and performance of antibiotics and antimicrobial concrete were evaluated by them. As results of this study, dispersibility and antibiosis of liquid antibiotics superior to powdery antibiotics. Antibiosis of antimicrobial concrete was verified, and amount of elution of harmful and effective ingredients was little. In workability, setting time of antimicrobial concrete was delayed. Compressive strength and resistance to carbonation of antimicrobial concrete were more increased than ordinary concrete. Also, as little pore volume and closed structure of antimicrobial concrete were observed, watertightness of it was verified. Finally artificial accelerating test for biochemical corrosion was proposed, and its suitability was experimentally proved.

Preparation and Characterization of High Performance Activated Carbon Fibers from Stabilized PAN fibers (PAN계 안정화섬유로부터 고기능성 활성탄소섬유의 제조 및 특성)

  • 임연수;유기상;문숙영;정윤중;김명수;함현식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.468-474
    • /
    • 2003
  • Activated carbon fibers were prepared from stabilized PAN fibers by physical and chemical activation to compare their characteristics. In this study, stabilized PAN fibers were activated by physical activation with steam and CO$_2$, and by chemical activation with KOH. The fabricated activated carbon fibers were evaluated and compared such as specific surface area, pore size distribution, pore volume, and amount of iodine adsorption. In the steam activation, a specific surface area of 1635 m$^2$/g was obtained after heat treatment at 990$^{\circ}C$. Otherwise, in the CO$_2$ activation, produced activated carbon fibers had been a specific surface area of 671 m$^2$/g after heat treatment at 990$^{\circ}C$. In chemical activation using KOH, a specific surface area of 3179 m$^2$/g was obtained with a KOH/ stabilized PAN fiber ratio of 1.5 : 1 at 900$^{\circ}C$. Nitrogen adsorption isotherms for fabricated activated carbon fibers showed type I and transformation from type I and II in the Brunauer-Deming-Deming-Teller (B.D.D.T) classification. Increasing specific surface area Increased the amount of iodine adsorption in both activation methods. Because the ionic radius of iodine was smaller than the interior micropore size of activated carbon fibers.

Study of CO2 Adsorption Characteristics on Acid Treated and LiOH Impregnated Activated Carbons (산 처리 및 LiOH 첨착 활성탄에서 이산화탄소의 흡착 특성에 대한 연구)

  • Han, Jae Uk;Kim, Dae Jung;Kang, Min;Kim, Jin Won;Kim, Ji Man;Yie, Jae Eui
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.312-316
    • /
    • 2005
  • Adsorption characteristics of $CO_2$ on activated carbons were evaluated using dynamic adsorption method in a fixed bed with acid treatment, LiOH impregnation and water vapor supply. Physical and chemical properties of the activated carbons were measured using SEM, EDS, nitrogen adsorption, FTIR and XRD. Nitric acid treatment led to the decrease in BET surface area and the increase in oxygen content of virgin activated carbon, and it produced a new functional group that included nitrogen. For the reduction of BET surface area by LiOH impregnation, the nitric acid treated activated carbon (NAC) was less than the virgin activated carbon (AC). Large particles of LiOH were present on the carbon surface when the content of LiOH was over 2 wt%. The adsorbed amount of $CO_2$ on activated carbon in a fixed bed increased with the acid treatment, LiOH impregnation and water vapor supply. The XRD results indicated that LiOH was converted to $Li_2CO_3$ after the adsorption of $CO_2$ on LiOH precursor.