Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.10
/
pp.75-80
/
2017
In this paper, we describe the effect of the regularization method and the network with identity mapping on the performance of the activation functions in deep convolutional neural networks. The activation functions act as nonlinear transformation. In early convolutional neural networks, a sigmoid function was used. To overcome the problem of the existing activation functions such as gradient vanishing, various activation functions were developed such as ReLU, Leaky ReLU, parametric ReLU, and ELU. To solve the overfitting problem, regularization methods such as dropout and batch normalization were developed on the sidelines of the activation functions. Additionally, data augmentation is usually applied to deep learning to avoid overfitting. The activation functions mentioned above have different characteristics, but the new regularization method and the network with identity mapping were validated only using ReLU. Therefore, we have experimentally shown the effect of the regularization method and the network with identity mapping on the performance of the activation functions. Through this analysis, we have presented the tendency of the performance of activation functions according to regularization and identity mapping. These results will reduce the number of training trials to find the best activation function.
Proceedings of the Optical Society of Korea Conference
/
2002.07a
/
pp.30-31
/
2002
하나의 구동기를 작동하여 거울을 변형시킬 때, 변형된 거울면의 형태를 영향 함수(influence function)라고 정의하며, 이러한 영향 함수를 이용하여 적응 광학계의 주요한 광학 요소인 변형 거울을 효과적으로 모형화하고 설계할 수 있다. 본 논문에서는 유한요소해석을 이용하여 계산된 변형 거울의 실제 영향 함수를 가우시안 함수(Gaussian function) 형태로 단순화하고, 추가로 구동기들 사이의 영향을 고려한 커플링 계수(coupling coefficient)를 도입하여, 주어진 구동기 배열에 대한 영향 함수를 결정하였다. (중략)
Huber의 M-추정함수의 형태는 조율상수가 주어질 때 비로소 그 형태가 결정된다. 조율상수를 커널밀도함수추정량의 평활계수를 이용하여 구하여 보았고, 모의실험을 통해 기존에 상요되는 조율상수들과 그 성능을 비교하여 보았다. 그 결과 새로운 방법에 의해 구해진 조율상수가 기존의 조율상수를 사용하는 경우 보다 모의실험을 통해 얻은 추정치의 분산이 작게되는 경우가 있음을 알았다.
RBF 네트워크에서 기저함수의 위치는 네트워크의 성능에 매우 큰 영향을 미친다. 몇몇 응용들에서 교사학습을 이용한 기저함수의 위치 선정이 비교사학습에 비해 우수함을 보인다. 그러나 교사학습에 의한 네트워크는 시그모이드 네트워크와 같은 긴 학습시간을 필요로 한다. 본 논문에서는 오차함수의 gradient와 Hessian을 이용해 교사학습에서 요구하는 학습시간을 단축시키면서 기저함수의 최적위치를 추정하였다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.6
/
pp.117-122
/
2021
Autonomous driving allows cars to drive without people and is being studied very actively thanks to the recent development of artificial intelligence technology. Among artificial intelligence technologies, deep reinforcement learning is used most effectively. Deep reinforcement learning requires us to build a neural network using an appropriate activation function. So far, many activation functions have been suggested, but different performances have been shown depending on the field of application. This paper compares and evaluates the performance of which activation function is effective when using deep reinforcement learning to learn autonomous driving on highways. To this end, the performance metrics to be used in the evaluation were defined and the values of the metrics according to each activation function were compared in graphs. As a result, when Mish was used, the reward was higher on average than other activation functions, and the difference from the activation function with the lowest reward was 9.8%.
본 논문은 다수의 가우시안(Gaussian) 함수를 가중치 함수로 이용하여 퍼지 소속 함수의 효율적인 동정기법을 제안한다. 먼저 데이터를 가장 잘 구분하는 특징 변수를 선정하고, 이에 대한 기본 소속 함수를 가우시안 함수로 설정한 후, 다수의 가우시안 함수를 곱하여 소속 함수를 동정한다. 해당 특징 변수에 대한 소속 함수의 동정 후, 다음 우선 순위의 특징 변수를 퍼지 규칙에 첨가하여 가장 높은 정확도를 획득할 때까지 반복적으로 소속 함수를 동정한다. 이러한 방법은 데이터의 분포 성향을 소속 함수에 반영시킬 수 있을 뿐만아니라, 알고리듬의 고속 연산도 가능하다. 제안한 방법의 성능을 검증하기 위해 iris 데이터에 적용하여 모의실험의 예를 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.110-113
/
2019
본 논문에서는 임베디드 시스템에서의 양자화 기계학습을 수행할 경우 발생하는 양자화 오차를 효과적으로 보상하기 위한 방법론을 제안한다. 경사 도함수(Gradient)를 사용하는 기계학습이나 비선형 신호처리 알고리즘에서 양자화 오차는 경사 도함수의 조기 소산(Early Vanishing Gradient)을 야기하여 전체적인 알고리즘의 성능 하락을 가져온다. 이를 보상하기 위하여 경사 도함수의 최대 성분에 대하여 직교하는 방향의 보상 탐색 벡터를 유도하여 양자화 오차로 인한 성능 하락을 보상하도록 한다. 또한, 기존의 고정 학습률 대신, 내부 순환(Inner Loop) 없는 비선형 최적화 알고리즘에 기반한 적응형 학습률 결정 알고리즘을 제안한다. 실험결과 제안한 방식의 알고리즘을 비선형 최적화 문제에 적용할 시 양자화 오차로 인한 성능 하락을 최소화시킬 수 있음을 확인하였다.
Proceedings of the Acoustical Society of Korea Conference
/
1995.06a
/
pp.55-60
/
1995
고차 통계 방법을 이용하여 잡음이 섞인 음성 신호에서 피치를 구하는 방법과 이를 이용하여 유성음 및 무성음 구간을 구분하는 방법을 구현하고 그 결과를 기술하였다. 고차 통계의 일종인 3차 cumulant 함수의 경우 Gaussian 또는 대칭적인 분포를 갖는 잡음 신호를 음성신호로부터 효과적으로 분리하여 제거시키는 특징을 가지고 있으며, 이러한 특징을 이용하면 잡음 환경에서 여러 가지 음성 특징 파라메터들을 보다 신뢰도 높게 추정할 수 있다. 본 논문에서는 dam성 신호의 3차 cumulant 함수의 자기상관함수로부터 음성의 피치 주기를 추정하였으며, 피치 위치에서의 normalized peak 크기에 의해 유성음과 무성음을 구분하였다. 또한 성능 비교를 위해 음성 신호 자체의 자기 상관 함수로부터 역시 피치 주기 및 유성음/무성음 구분을 수행하였다. 백색 및 유색 Gaussian 잡음 환경에서의 음성의 피치 주기 추정 실험 결과 SNR가 낮은 경우에 3차 cumulant를 이용한 방법이 2차 통계에 비해 우수한 성능을 나타내었다. 또한 동일한 잡음 환경에서의 유성음/무성음 판별 시험에서도 3차 cumulant를 이용한 방법이 기존의 2차 통계를 이용한 방법에 비해 성능이 크게 향상된 결과를 얻었다.
본 논문에서는 시간 지연이 없는 서브밴드 필터 구조를 사용한 능동 소음 제어 시 스템을 제안하였다. 제안된 시스템은 기준 입력 신호와 2차 경로의 전달 함수를 컨볼루션하 여 만들어지는 filtered reference 신호가 서브밴드내에서 생성될 수 있도록, 2차 소음원과 오차 센서 사이의 전기·음향학적인 경로를 나타내는 2차 전달 함수를 각 서브밴드로 재구 성함으로써, 알고리듬 구현시 계산량을 감소시킨다. 또한 2차 경로의 전달함수가 시간에 따 라 변화하는 경우에도 능동 소음 제어 시스템의 소음 제어 성능을 유지할 수 있도록, 각 밴 드마다 두 개의 적응필터를 사용한 on-line 시스템 인지 구조를 제안하여 on-line 시스템 인 지에 필요한 계산량을 감소시켰다. 본 논문에서 제시한 능동 소음 제어 시스템의 제어 성능 과 on-line 시스템 인지 성능을 모의 실험을 통하여 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.