본 논문은 저대비에 의한 영상 정보의 불확실성이 화소가 가지고 있는 명암도의 모호성과 애매성에 근거한다는 점에서 퍼지 변환 함수를 적용하여 영상 향상을 기하고자 한다. 명암도 분포가 한쪽으로 치우친 저대비 영상의 문제를 해결하고자 k-means 알고리즘을 사용하여 물체와 배경을 구분할 수 있는 자동 임계점을 찾고 이를 기준으로 영상의 밝은 부분과 어두운 부분의 대비 향상을 가져올 수 있도록 퍼지 변환 함수를 적용한다. 퍼지 변환 함수는 영상 향상을 위해 3단계-입력 영상을 퍼지 영역으로 변환시키는 퍼지화 단계와 대비를 향상시키는 대비 강화 단계 그리고 퍼지 영역을 다시 영상 영역으로 변환시키는 비퍼지화 단계로 제시된다. 향상된 영상의 성능을 평가하고자 퍼지성 지수와 엔트로피 지수를 제시하여 이를 히스토그램 균등화 기법과 비교하고 실험결과로 성능의 우수함을 보여준다.
데이터 불균형은 분류 문제에서 흔히 마주치는 문제로, 데이터셋 내의 클래스간 샘플 수의 현저한 차이에서 기인한다. 이러한 데이터 불균형은 일반적으로 분류 모델에서 과적합, 과소적합, 성능 지표의 오해 등의 문제를 야기한다. 이를 해결하기 위한 방법으로는 Resampling, Augmentation, 규제 기법, 손실 함수 조정 등이 있다. 본 논문에서는 손실 함수 조정에 대해 다루며 특히, 불균형 문제를 가진 Multi-Class 블랙박스 동영상 데이터에서 여러 구성의 손실 함수(Cross Entropy, Balanced Cross Entropy, 두 가지 Focal Loss 설정: 𝛼 = 1 및 𝛼 = Balanced, Asymmetric Loss)의 성능을 I3D, R3D_18 모델을 활용하여 비교하였다.
Journal of the Korean Data and Information Science Society
/
제23권6호
/
pp.1045-1054
/
2012
서포트벡터 기계는 분류 및 비선형 함수추정에서 유용하게 사용되고 있는 통계적 기법이다. 본 논문에서는 두 개의 입력변수와 회귀함수의 단조 관계를 이용하여 단조 서포트벡터기계를 제안하고, Kaplan-Meier의 방법에 의해서 생존함수의 추정값이 주어진 경우 제안된 방법을 이용하여 생존 함수를 평활하는 방법 또한 제안한다. 모의실험에서는 실제 생존함수를 이용하여 Kaplan-Meier의 방법에 의한 생존함수의 추정값과의 성능을 비교함으로써 제안된 방법의 우수성을 보이기로 한다.
과거 고속도로는 이동성 중심의 기능을 주로 담당하였으나, 삶의 질 향상과 의식 수준의 향상에 따라 '빠른 고속도로'에서 '안전한 고속도로'로 고속도로 기능의 패러다임이 변화하고 있다. 고속도로 교통사고는 2012년 기준 3,550건이 발생하였으며, 371명이 교통사고로 사망한 것으로 집계되었고, 치사율은 일반국도의 약 2배에 달하는 것으로 보고되고 있다. 본 연구에서는 고속도로 주요 6개 노선을 대상으로 교통사고건수와 교통량 기반의 사고예측모형(안전성능함수)을 개발하였다. 안전성능함수는 각 노선별로 도로의 선형 및 규모 등이 달라 정확하게 각 노선을 예측하는데 어려움이 있을 것으로 판단되어, 6개 노선의 통합 안전성능함수를 구축하고, 각 노선별로 교통사고를 보정할 수 있는 계수를 산출하였다. 본 연구의 결과는 향후 교통사고 예방을 위한 노선별 교통안전 전략수립의 기초자료로 활용함으로써 보다 안전한 고속도로 관리에 기여할 것으로 판단된다. 향후에는 각 노선별 특성에 따른 그룹별 통합모형을 통한 노선별 보정계수를 산출하여 신뢰성 있는 사고 예측값을 제시하는 연구가 수행되어야 할 것이다.
본 연구는 우리나라 전체 도로 유형을 대상으로 빅데이터를 이용하여 안전성능함수(safety performance function, SPF)를 개발하고, 그것을 바탕으로 다양한 도로에 대한 안전등급을 평가함으로써 상대적으로 위험한 도로에 대한 대책을 수립할 수 있는 기초 정보를 제공하고자 하였다. 교통사고 자료를 국가표준 노드 및 링크 체계를 기반으로 전국의 도로에 매칭 하여 종속 변수로 활용하였으며, 독립변수로 링크 길이, 차로 수 등 기하구조 자료 및 한국교통연구원의 ViewT 교통량 자료, 그리고 사업용 차량에 장착된 운행기록계를 통한 위험운전행동 건수를 활용한 4개 시스템의 교통 빅데이터를 활용하여 연구를 진행하여 7개 도로 유형별 안전성능함수를 개발하고, 개발된 안전성능함수를 활용하여 도로유형별로 A, B, C, D 네 개의 안전등급을 평가하였다. 본 연구에서 사용한 방법론과 분석 결과를 토대로 우리나라의 위험도로를 선정하였다. 도출된 결과를 바탕으로 교통안전 개선사업의 대상을 선정하고 그에 따른 효과 등을 모니터링하고 계량화할 수 있을 것으로 기대된다.
본 논문에서는 오차 신호의 비선형 함수를 이용하는 VS-CCA (Varying Step-Compact Constellation Algorithm)에서 적응을 위한 step 변화 속도값에 따른 적응 등화의 성능을 비교하였다. VS-CCA 알고리즘은 16-QAM과 같은 nonconstant modulus 신호를 4개의 4-QAM constant modulus 신호군으로 compact화한 후, 송신 신호의 통계치인 고정 modulus를 이용하여 오차 신호를 발생하여 이의 비선형 함수를 이용하는 varying step으로 최소비용 함수를 얻도록 적응 등화기의 탭 계수를 갱신한다. 이때 비선형 함수의 step 변화 속도값에 따라 순시 적응 step값이 결정되며, 이의 값에 따라 상이한 적응 등화 성능을 얻을 수 있음을 컴퓨터 시뮬레이션을 통해 확인하였다. step 변화 속도값에 따른 등화 성능 비교 지수로는 등화기 내부 지수와 외부 잡음에 대한 강인성을 나타내는 등화기 외부 지수를 사용하였다. 컴퓨터 시뮬레이션 결과 정상 상태에서 변화 속도를 1.0보다 적게 할수록 모든 성능 지수에서 1.0보다 큰 경우 보다 우월해짐을 알 수 있었다.
본 연구에서는 가스 차단기의 소전류 차단성능을 개선하기 위한 최적화 과정에 대해서 나타낸다. 목적함수는 절연내력과 극간 인가전압의 차이의 최소값으로 선정하였으며, 목적함수가 최대가 되도록 최적화를 수행한다. 설계 변수로는 개극 전의 전극 이동길이, 노즐목 길이 및 노즐목 발산각과 노즐 하류장 형상을 채택하였다. 최적화 알고리즘으로는 (1+1) 진화알고리즘을, 유동해석을 위해서는 FVFLIC법을 사용하였다. 최적화 결과로 얻어진 모델은 초기 모델에 비해 소전류 차단성능이 상당히 개선되었음을 확인할 수 있었다.
본 논문에서는 스테레오 음향 반향 제거기의 성능을 향상시킬 수 있는 새로운 전처리 방법의 반향 제거기를 제안한다. 제안한 반향 제거기는 MINT (Multiple input/output INverse Theorem) 필터링에 의해 실내 전달함수의 잔향이 저감되어진 입력을 사용함으로써 필터계수의 추정오차를 감소시켜 성능을 향상시킬 수 있었다. 실제의 스테레오 음성과 실제 음장의 전달함수를 사용한 시뮬레이션 결과, 제안한 방법이 NLMS (Normalized Least Mean Square)와 Projection 등의 적응 알고리즘 종류에 관계없이 ERLE가 3∼5 dB 향상됨을 확인하였다.
Type-2 퍼지 집합은 Type-1 퍼지 집합에서는 다루기 어려운 언어적인 불확실성을 더욱 효과적으로 다룰 수 있다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 후반부를 1차 및 2차 함수식으로 나타내며 Mamdani 모델과 함께 가장 널리 사용되는 모델이다. 본 연구의 Interval Type-2 TSK FLS은 전반부에서 Type-2 퍼지 집합을 이용하고 후반부는 계수가 Type-1 퍼지집합인 1차식을 사용한다. 또한 전반부는 가우시안 형태의 Type-2 멤버쉽 함수를 사용하며, 오류역전파 학습알고리즘을 사용하여 파라미터들을 최적화 한다. 또한 학습에 앞서 PSO(Particle Swarm Optimization) 알고리즘을 사용하여 최적 학습률을 찾아 모델의 학습능력을 보다 효율적으로 한다. 본 논문에서는 Type-1과 Type-2 FLS의 성능을 가스로 공정 데이터를 적용하여 두 모델의 성능을 비교하고 노이즈를 추가한 데이터를 이용하여 노이즈에 대한 성능도 비교 분석한다.
얼굴인식은 동일 사람의 얼굴이라도 조명변화나 얼굴 표정변화에 따라 매우 다른 영상들로 나타나기 때문에 매우 어려운 문제이다. 본 논문에서는 조명변화에도 강인하고 얼굴영상에 대해 높은 얼굴 인식률을 얻기 위해 2D-HMM(Hidden Markov Model) 얼굴인식 방법을 제안하고 실험하였다. 제안된 방법은 조명변화에 대해서 조명변화 함수인 $\delta$(delta) 함수를 0, 40, 60, 80으로 변화해 가면서 이미지 보정을 실험하였으며, 계산의 복잡성을 줄이고 얼굴영상에 대한 높은 인식률을 얻기 위해 기존의 픽셀값 대신에 2D-DCT 계수를 관측벡터로 사용하였다. 시스템의 성능을 평가하기 위해 정량적 평가방법은 FAR(False Accpt Rate)와 FRR(False Reject Rate)를 측정하여 비교하였으며, 기존의 얼굴인식 방법인 PCA, 1차원 HMM과 비교분석하였다. 실험결과 2D-HMM의 경우 FAR(False Accept Rate)가 5.08%로 ID-HMM 5.18%, PCA 10.16%보다 높은 성능을 보였으며, FRR(False Reject Rate)의 경우에도 0.01%로 10.16%인 PCA보다 좋은 성능을 보였다. 이로서 조명변화에 대해서는 PCA보다 2D-HMM 얼굴인식 방법이 우수함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.