Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1315-1317
/
2013
규칙 기반의 영한 기계번역 시스템의 구문 분석 시스템은 영어의 구문 구조를 기술하는 규칙 부분과 규칙을 적용하여 차트 파싱을 수행하는 실행 부분으로 구성된다. 구문 규칙은 문맥 자유 문법의 형식으로 기술되는데, 기술된 구문 규칙을 적용하여 파싱을 실행하는 실행 부분은 C 언어 함수로 표현되므로, 구문 규칙을 C 언어 함수로 변환해야 한다. 본 논문에서는 문맥 자유 문법 형식으로 기술된 구문 규칙을 C 언어 함수로 변환하는 도구인 구문 규칙 컴파일러를 개발하였다. 구문 규칙 컴파일러는 자동적으로 구문 규칙을 C 언어 함수로 변환함으로써 영한 기계번역 시스템의 성능 개선 과정에서 빈번하게 발생하는 구문 규칙의 생성과 수정을 용이하게 하여 번역 성능을 개선하는 작업을 지원한다.
In recent years, there has been a strong interest in the end-to-end autonomous driving based on deep reinforcement learning. In this paper, we present a reward function of latent SAC deep reinforcement learning to improve the longitudinal driving performance of an agent vehicle. While the existing reward function significantly degrades the driving safety and efficiency, the proposed reward function is shown to maintain an appropriate headway distance while avoiding the front vehicle collision.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.78-79
/
2021
본 논문에서는 시간 영역 오토인코더의 성능 개선을 위한 다중 대역 손실 함수를 제안한다. 기존의 시간 영역 오토인코더를 사용하는 압축 및 복원 모델은 저 대역 손실에 치중되어 고 대역 신호를 생성하지 못하고 다운 샘플링된 신호를 결과로 출력하는 문제점을 가진다. 이를 해결하기 위해 대역별로 손실을 분리하여 가중치를 조절할 수 있는 다중 대역 손실 함수를 제안한다. 제안하는 손실 함수가 적용된 오토인코더에 음성 신호를 입력하여 학습을 진행한 결과, 다운 샘플링이 발생하지 않으며 고 대역 신호가 복원되는 것을 스펙트로그램을 통해 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.217-220
/
2022
본 논문에서는 CCTV 영상 화질을 향상하고 해상도를 높이기 위해 딥 러닝(Deep Learning)을 이용하여 잡음 제거(Denoising) 와 초해상도(Super-resolution) 작업을 수행한다. 데이터 증강(Data Augmentation)을 통한 초해상도 성능 향상을 위해서 잡음 제거 네트워크의 출력 영상을 초해상도 네트워크의 입력으로 사용하는 순차적 작업을 사용한다. 또한 딥 러닝을 이용한 영상처리에서 발생하는 평균 밝기 오차 문제를 해결하기 위한 손실함수(Loss Function)와 두 가지 이상의 순차적인 딥 러닝 작업에서 발생하는 문제점을 극복하기 위한 손실함수를 제안한다. 제안하는 손실함수는 네트워크의 출력 영상과 타겟 영상의 밝기 오차를 줄이는 것이 가능하고, 순차적 작업에서 보다 정확한 모델 성능 판단이 가능하다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.2
/
pp.105-110
/
2018
This paper compare the adaptive equalization performance of NM-MMA (Novel Mixed-MMA) algorithm which using the mixed const function by scaling factor values. The mixed cost function of NM-MMA composed of the appropriate weighted addition of gradient vector in the MMA and SE-MMA cost function, and updating the tap coefficient based on these function, it is possible to improve the convergence speed and MSE value of current algorithm. The computer simulation was performed in the same channel, step size, SNR environment by changing the scaling factor, and its performance were compared appling the equalizer output constellation, residual isi, MD, MSE, SER. As a result of computer simulation, the residual values of performance index were reduced in case of the scaling factor of MMA cost function was greater than the scaling factor of SE-MMA. and the convergence speed was improved in case of the scaling factor of SE-MMA was greater than the MMA.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.9
/
pp.2029-2036
/
2015
Hadoop MR(MapReduce) uses a partition function for passing the outputs of mappers to reducers. The partition function determines target reducers after calculating the hash-value from the key and performing mod-operation by reducer number. The legacy partition function doesn't divide the job effectively because it is so sensitive to key distribution. If the job isn't divided effectively then it can effect the total processing time of the job because some reducers need more time to process. This paper proposes the VPT(Virtual Partition Table) and has tested appling the VPT with a preponderance of data. The applied VPT improved three seconds on average and we figure it will improve more when data is increased.
Performances of retroreflectivity vary place to place, according to traffic volumes and time lengths after striping, depending on pavement marking materials and colors. The present paper uses the nation wide data of retroreflectivity, which has been collected from freeways and then tries to develop the regression curve setting traffic volume and service life as independent variables and retroreflectivities as dependent variables. The DB system includes two year's measurement in $2005{\sim}2006$ over Korean freeway pavement marking at an interval of three months for the period. The mobile measurement system, a laserlux, was employed for the purpose. The DB has provided a lot of information about materials and performance of the specific pavement marking such as geometric features, traffic volumes, material characteristics and the installation date. This study provides the comparison of pavement marking performances under diversified conditions. Based on accumulated pavement marking performances, this study provides performance curves based on the diversified factors. The goal of the retroreflectivity modeling is to develop equations that can be used to estimate an average retroreflectivity of pavement markings as a function time since application and traffic volume. After representing the variation of retroreflectivities and estimating regression curves by linear, exponential, logarithmic and power function, the regression curve which had the highest coefficient of determination and the value similar to the last field measurement was regarded as the retroreflectivity decay model. As a result of verification, the decay model showed the signification within the 90% confidence level and especially showed the clear relation with field data according to increase of cumulative vehicle exposure. Accordingly, these models can be used to determine service lives, retroreflectivity degradation rates, and retroreflectivity of new markings.
The Journal of Korean Institute of Communications and Information Sciences
/
v.22
no.10
/
pp.2246-2255
/
1997
Gardner proposed an algorithm for timing recovery of BPSK/QPSK signals based on zero-crossing detection technique. When Gardner's method is applied to multi-level PAM signals, it suffers from increased timing jitter due to self noise. To alleviate this problem, an improved algoritjm is proposed in this paper. The timing function is modified so that it zero point at the transition of PAM signals, that results in remarkable reduced timing jitter. The performance of the proposed algorithm is analyzed and compared to that of Garner's one. Finally, analytical results are verified by computer simulation.
This paper proposes a new multiobjective optimization method for discriminative training of hidden Markov models (HMMs) used as the recognizer for automatic lipreading. While the conventional Baum-Welch algorithm for training HMMs aims at maximizing the probability of the data of a class from the corresponding HMM, we define a new training criterion composed of two minimization objectives and develop a global optimization method of the criterion based on simulated annealing. The result of a speaker-dependent recognition experiment shows that the proposed method improves performance by the relative error reduction rate of about 8% in comparison to the Baum-Welch algorithm.
Journal of the Korea Society of Computer and Information
/
v.11
no.3
/
pp.107-115
/
2006
This paper presents a new class of activation functions for Cascade Correlation learning algorithm, which herein will be called CosGauss function. This function is a cosine modulated gaussian function. In contrast to the sigmoidal, hyperbolic tangent and gaussian functions, more ridges can be obtained by the CosGauss function. Because of the ridges, it is quickly convergent and improves a pattern recognition speed. Consequently it will be able to improve a learning capability. This function was tested with a Cascade Correlation Network on the two spirals problem and results are compared with those obtained with other activation functions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.