• Title/Summary/Keyword: 성능함수

Search Result 3,334, Processing Time 0.028 seconds

Syntactic Rule Compiler in Rule-based English-Korean Machine Translation (규칙 기반 영한 기계번역에서의 구문 규칙 컴파일러)

  • Kim, Sung-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1315-1317
    • /
    • 2013
  • 규칙 기반의 영한 기계번역 시스템의 구문 분석 시스템은 영어의 구문 구조를 기술하는 규칙 부분과 규칙을 적용하여 차트 파싱을 수행하는 실행 부분으로 구성된다. 구문 규칙은 문맥 자유 문법의 형식으로 기술되는데, 기술된 구문 규칙을 적용하여 파싱을 실행하는 실행 부분은 C 언어 함수로 표현되므로, 구문 규칙을 C 언어 함수로 변환해야 한다. 본 논문에서는 문맥 자유 문법 형식으로 기술된 구문 규칙을 C 언어 함수로 변환하는 도구인 구문 규칙 컴파일러를 개발하였다. 구문 규칙 컴파일러는 자동적으로 구문 규칙을 C 언어 함수로 변환함으로써 영한 기계번역 시스템의 성능 개선 과정에서 빈번하게 발생하는 구문 규칙의 생성과 수정을 용이하게 하여 번역 성능을 개선하는 작업을 지원한다.

On the Reward Function of Latent SAC Reinforcement Learning to Improve Longitudinal Driving Performance (종방향 주행성능향상을 위한 Latent SAC 강화학습 보상함수 설계)

  • Jo, Sung-Bean;Jeong, Han-You
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.728-734
    • /
    • 2021
  • In recent years, there has been a strong interest in the end-to-end autonomous driving based on deep reinforcement learning. In this paper, we present a reward function of latent SAC deep reinforcement learning to improve the longitudinal driving performance of an agent vehicle. While the existing reward function significantly degrades the driving safety and efficiency, the proposed reward function is shown to maintain an appropriate headway distance while avoiding the front vehicle collision.

A Multi-band Loss Function for Improving Time-Domain Autoencoder (시간 영역 오토인코더의 성능 개선을 위한 다중 대역 손실 함수)

  • Lim, Yujin;Yu, Jeongchan;Seo, Eunmi;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.78-79
    • /
    • 2021
  • 본 논문에서는 시간 영역 오토인코더의 성능 개선을 위한 다중 대역 손실 함수를 제안한다. 기존의 시간 영역 오토인코더를 사용하는 압축 및 복원 모델은 저 대역 손실에 치중되어 고 대역 신호를 생성하지 못하고 다운 샘플링된 신호를 결과로 출력하는 문제점을 가진다. 이를 해결하기 위해 대역별로 손실을 분리하여 가중치를 조절할 수 있는 다중 대역 손실 함수를 제안한다. 제안하는 손실 함수가 적용된 오토인코더에 음성 신호를 입력하여 학습을 진행한 결과, 다운 샘플링이 발생하지 않으며 고 대역 신호가 복원되는 것을 스펙트로그램을 통해 확인하였다.

  • PDF

CCTV Image Quality Enhancement using Histogram Loss and Sequential Task (히스토그램 손실함수와 순차적 작업을 이용한 CCTV 영상 화질 향상)

  • Jeong, Minkyo;Choi, Jongin;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.217-220
    • /
    • 2022
  • 본 논문에서는 CCTV 영상 화질을 향상하고 해상도를 높이기 위해 딥 러닝(Deep Learning)을 이용하여 잡음 제거(Denoising) 와 초해상도(Super-resolution) 작업을 수행한다. 데이터 증강(Data Augmentation)을 통한 초해상도 성능 향상을 위해서 잡음 제거 네트워크의 출력 영상을 초해상도 네트워크의 입력으로 사용하는 순차적 작업을 사용한다. 또한 딥 러닝을 이용한 영상처리에서 발생하는 평균 밝기 오차 문제를 해결하기 위한 손실함수(Loss Function)와 두 가지 이상의 순차적인 딥 러닝 작업에서 발생하는 문제점을 극복하기 위한 손실함수를 제안한다. 제안하는 손실함수는 네트워크의 출력 영상과 타겟 영상의 밝기 오차를 줄이는 것이 가능하고, 순차적 작업에서 보다 정확한 모델 성능 판단이 가능하다.

  • PDF

A Performance Variation by Scaling Factor in NM-MMA Adaptive Equalization Algorithm (NM-MMA 적응 등화 알고리즘에서 Scaling Factor에 의한 성능 변화)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • This paper compare the adaptive equalization performance of NM-MMA (Novel Mixed-MMA) algorithm which using the mixed const function by scaling factor values. The mixed cost function of NM-MMA composed of the appropriate weighted addition of gradient vector in the MMA and SE-MMA cost function, and updating the tap coefficient based on these function, it is possible to improve the convergence speed and MSE value of current algorithm. The computer simulation was performed in the same channel, step size, SNR environment by changing the scaling factor, and its performance were compared appling the equalizer output constellation, residual isi, MD, MSE, SER. As a result of computer simulation, the residual values of performance index were reduced in case of the scaling factor of MMA cost function was greater than the scaling factor of SE-MMA. and the convergence speed was improved in case of the scaling factor of SE-MMA was greater than the MMA.

A Development Study of The VPT for the improvement of Hadoop performance (하둡 성능 향상을 위한 VPT 개발 연구)

  • Yang, Ill Deung;Kim, Seong Ryeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2029-2036
    • /
    • 2015
  • Hadoop MR(MapReduce) uses a partition function for passing the outputs of mappers to reducers. The partition function determines target reducers after calculating the hash-value from the key and performing mod-operation by reducer number. The legacy partition function doesn't divide the job effectively because it is so sensitive to key distribution. If the job isn't divided effectively then it can effect the total processing time of the job because some reducers need more time to process. This paper proposes the VPT(Virtual Partition Table) and has tested appling the VPT with a preponderance of data. The applied VPT improved three seconds on average and we figure it will improve more when data is increased.

Methodology to Predict Service Lives of Pavement Marking Materials (도로 차선 재료의 공용수명 예측방법)

  • Oh, Heung-Un;Lee, Hyun-Seock;Jang, Jung-Hwa;Kang, Jai-Soo
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.151-159
    • /
    • 2008
  • Performances of retroreflectivity vary place to place, according to traffic volumes and time lengths after striping, depending on pavement marking materials and colors. The present paper uses the nation wide data of retroreflectivity, which has been collected from freeways and then tries to develop the regression curve setting traffic volume and service life as independent variables and retroreflectivities as dependent variables. The DB system includes two year's measurement in $2005{\sim}2006$ over Korean freeway pavement marking at an interval of three months for the period. The mobile measurement system, a laserlux, was employed for the purpose. The DB has provided a lot of information about materials and performance of the specific pavement marking such as geometric features, traffic volumes, material characteristics and the installation date. This study provides the comparison of pavement marking performances under diversified conditions. Based on accumulated pavement marking performances, this study provides performance curves based on the diversified factors. The goal of the retroreflectivity modeling is to develop equations that can be used to estimate an average retroreflectivity of pavement markings as a function time since application and traffic volume. After representing the variation of retroreflectivities and estimating regression curves by linear, exponential, logarithmic and power function, the regression curve which had the highest coefficient of determination and the value similar to the last field measurement was regarded as the retroreflectivity decay model. As a result of verification, the decay model showed the signification within the 90% confidence level and especially showed the clear relation with field data according to increase of cumulative vehicle exposure. Accordingly, these models can be used to determine service lives, retroreflectivity degradation rates, and retroreflectivity of new markings.

  • PDF

Timing recovery based on zero-crossing detection for multi-level PAM signals (영점교차검출에 의한 다중레벨 PAM 신호의 타이밍 복원)

  • 김정권;이용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2246-2255
    • /
    • 1997
  • Gardner proposed an algorithm for timing recovery of BPSK/QPSK signals based on zero-crossing detection technique. When Gardner's method is applied to multi-level PAM signals, it suffers from increased timing jitter due to self noise. To alleviate this problem, an improved algoritjm is proposed in this paper. The timing function is modified so that it zero point at the transition of PAM signals, that results in remarkable reduced timing jitter. The performance of the proposed algorithm is analyzed and compared to that of Garner's one. Finally, analytical results are verified by computer simulation.

  • PDF

Improved Automatic Lipreading by Multiobjective Optimization of Hidden Markov Models (은닉 마르코프 모델의 다목적함수 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.53-60
    • /
    • 2008
  • This paper proposes a new multiobjective optimization method for discriminative training of hidden Markov models (HMMs) used as the recognizer for automatic lipreading. While the conventional Baum-Welch algorithm for training HMMs aims at maximizing the probability of the data of a class from the corresponding HMM, we define a new training criterion composed of two minimization objectives and develop a global optimization method of the criterion based on simulated annealing. The result of a speaker-dependent recognition experiment shows that the proposed method improves performance by the relative error reduction rate of about 8% in comparison to the Baum-Welch algorithm.

An Improvement of Performance for Cascade Correlation Learning Algorithm using a Cosine Modulated Gaussian Activation Function (코사인 모듈화 된 가우스 활성화 함수를 사용한 캐스케이드 코릴레이션 학습 알고리즘의 성능 향상)

  • Lee, Sang-Wha;Song, Hae-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.107-115
    • /
    • 2006
  • This paper presents a new class of activation functions for Cascade Correlation learning algorithm, which herein will be called CosGauss function. This function is a cosine modulated gaussian function. In contrast to the sigmoidal, hyperbolic tangent and gaussian functions, more ridges can be obtained by the CosGauss function. Because of the ridges, it is quickly convergent and improves a pattern recognition speed. Consequently it will be able to improve a learning capability. This function was tested with a Cascade Correlation Network on the two spirals problem and results are compared with those obtained with other activation functions.

  • PDF