• 제목/요약/키워드: 성능평가방법

검색결과 7,057건 처리시간 0.04초

식품 오염 미생물 분석을 위한 컴팩트 드라이법 평가 (Evaluation of a Compact Dry Method for Enumerating Bacteria in Contaminated Foods)

  • 정수진;한상하;강준구;송민수;송혜원;이하림;유지수;이경옥;하상도
    • 한국식품위생안전성학회지
    • /
    • 제39권4호
    • /
    • pp.304-311
    • /
    • 2024
  • 식품공전 시험법은 식품기초규격 적부 판정, 수거검사의 적부판정, 수입식품의 적부판정 등의 판단근거가 되기 때문에 식품산업에서 매우 중요하다. 본 연구는 도시락, 밀키트, 된장에 오염된 일반세균, 대장균군, 효모, 곰팡이, 대장균을 분리하기 방법으로 사용되는 평판배지법, Petrifilm법, Compact Dry법을 이용해 각각의 세균을 분리하였고, 회수율을 비교하였다. 식품 내 자연균총(일반세균, 효모/곰팡이, 대장균군)검출은 평판배지 PCA, PDA, DCLA와 Petrifilm AC, YM, CC의 성능을 Compact Dry TC, YMR, CF와 비교하였다. 인위접종한 대장균(E. coli)의 경우는 평판배지 EMB, Petrilfilm EC, Compact Dry EC의 검출능을 비교하였다. 본 실험결과, 일반세균, 대장균군, 대장균의 검출에서 Compact Dry법은 기존의 평판배지법 및 건조배지법과 비교하여 식품 내 각각의 세균수를 계수하는데 유의적 차이를 보이지 않았다(P>0.05). 또한, 평판배지법과 Compact Dry간의 상관관계 및 Petrifilm과 Compact Dry간의 상관관계 역시 1에 가까운 높은 값을 확인하였다. Compact Dry법은 미생물 분석을 위해 배지 준비 과정이 필요 없으며, 접종 후 자체 확산이 가능하여 사용하기 쉽고, 공간을 효율적으로 사용할 수 있으므로 기존의 배지를 사용하는 방법에 비해 많은 장점을 제공하였다. 따라서 식품 중 일반세균, 대장균군, 대장균의 검출을 위한 Compact Dry법(Compact Dry TC, CF, EC)은 기존의 식품공전 상 등재된 다른 건조필름법을 대체 가능한 것으로 판단된다.

MELAS 증후군과 미토콘드리아 근육병에서의 Tc-99m ECD 뇌단일 광전자방출 전산화단층촬영 소견: 자기공명영상과의 비교 (Tc-99m ECD Brain SPECT in MELAS Syndrome and Mitochondrial Myopathy: Comparison with MR findings)

  • 박상준;유영훈;전태주;김재근;남지은;윤평호;윤춘식;이종두
    • 대한핵의학회지
    • /
    • 제32권6호
    • /
    • pp.490-496
    • /
    • 1998
  • 목적: 본 연구의 목적은 MELAS 증후군과 미토콘드리아 근육병의 뇌 SPECT 소견을 알아보고 SPECT 소견과 자기공명영상 소견을 비교 분석하여 MELAS증후군의 특징적인 영상 소견을 찾아보고자 하였고 MELAS 증후군에 있어서 뇌 SPECT의 역할을 평가해 보고자 하였다. 대상 및 방법: 뇌졸중 유사 증상이나 경련 또는 발달 지연을 주소로 하였고, 혈청 또는 뇌척수액의 lactic acid치가 상승되어 있는 1세에서 25세의 5명의 환자를 대상으로 하였고 남녀비는 4:1이었다. 모든 환자에서 Tc-99m ECD를 이용한 뇌혈류 단일광전자방출 전산화 단층촬영술(SPECT)와 자기공명영상을 시행하여 영상 소견을 분석하였다. 결과: 자기공명영상에서는 주로 두정엽(4/5)과 후두엽(4/5), 그리고 기저핵(1/5)에 백질과 회백질에 증가된 T2 신호강도를 나타내었는데, 특정한 혈관 영역에는 부합하지 않는 병변의 분포양상을 보였다. SPECT상에서는 자기공명영상에서 이상소견을 보인 모든 부위에서 관류 저하를 보였으며 추가적으로 두정엽(1예), 측두엽(1예), 전두엽(1예), 기저핵(1예)와 시상(2예)에서도 감소된 Tc-99m ECD의 섭취를 나타내어서, 자기공명영상과 SPECT에서 이상 소견을 보인 수를 비교하면 자기공명영상에서 나타난 해부학적인 이상소견보다 SPECT에서 보인 관류 저하가 더 광범위하였다. 결론: MELAS 증후군의 SPECT에서는 특정한 혈관 영역에는 부합하지 않는 두정엽과 후두엽, 기저핵, 시상, 측두엽등의 관류저하를 보여 주었는데, 본 연구의 여러 제한점으로 인하여 MELAS 증후군에서만 나타나는 특징적인 소견이라고 할 수는 없었다. 자기공명영상에서 상응하는 이상 소견이 없이 SPECT에서만 관류 저하를 보이는 경우의 중요성은 좀 더 많은 수의환자를 대상으로 한 연구를 통해 평가되어져야 할 것으로 생각한다. 나타내었다.속도를 향상시킬 수 있었다. 정상인의 뇌영상에 대해 위치 정합을 실시한 결과 평균 거리 오차는 2mm 이하였다. 가중정규화 방법을 사용하였을 때 합성된 영상의 정성적인 식별 명확도가 향상하였다. 결론: 견실한 PET 영상 경계점 추출과 거리지도를 이용한 계산 속도의 향상을 통해 뇌 PET과 MR 영상 합성기법의 성능을 개선할 수 있었으며 이를 이용하며 개발한 영상정합 프로그램은 임상 환경에서 유용하게 사용될 수 있을 것이다.은 환자군을 대상으로 한 추가 연구가 필요한 것으로 판단된다.07% ID/g 이하로 매우 낮았다. 결론: 이실험에서 표지한 Re-188 황 교질은 표지효율과 안정성이 높고 임상적으로 방사선 활액막 절제술 등에 사용할 수 있을 것으로 생각한다.}I$] 또는 [$^{131}I$]OMIMT는 종양의 아미노산 대사 영상제제로 이용될 수 있으며 앞으로 이에 대한 임상연구가 필요할 것으로 생각되었다.>$R_A,\;R_v$의 결과간에 좋은 상관관계를 가졌다. 따라서 이러한 약역학 컴퓨터시뮬레이션이 SPECT 영상을 이용한 도파민 운반체 또는 수용체 정량분석을 최적화하는데 매우 유용할 것으로 생각된다.TEX>-CIT SPECT는 파킨슨병의 조기진단 및 진행 추적에 임상적으로 유용할 것으로 판단된다., SCC 4예, AC 1예)였으며, 11예 중 9예(81.8%)에서 방사선학적 검사결과와 Tc-99m MIBI섭취율의 변화가 일치하였다. 결론적으로, Tc-99m MIBI SPECT는 폐암병소의 국소화 및 방사선치료 효과의 판정에 어느정도 유용하리라 사료되었다.냈고 4명에서는 low CBD obstruction을 나타내었으며 후에 CBD stone, CBD carcinoma, gall bladder Ca.의 porta hepatis 전이 및 clonorchis worms의 cluster에

  • PDF

적응형 군집화 기반 확장 용이한 협업 필터링 기법 (Scalable Collaborative Filtering Technique based on Adaptive Clustering)

  • 이오준;홍민성;이원진;이재동
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.73-92
    • /
    • 2014
  • 기존 협업 필터링 기법은 사용자들의 아이템에 대한 선호도를 기반으로 유사 아이템 집합 또는 유사 사용자 집합을 구성하고, 이를 이용해 예측된 사용자의 특정 아이템에 대한 선호도를 기반으로 추천을 수행한다. 이로 인해, 사용자 선호도 정보가 부족하게 되면, 유사 아이템 사용자 집합의 신뢰도가 낮아지고, 추천 서비스의 신뢰도 또한 따라서 낮아진다. 또한, 서비스의 규모가 커질수록, 유사 아이템, 사용자 집합의 생성에 걸리는 시간은 기하급수적으로 증가하고 추천서비스의 응답시간 또한 그에 따라 증가하게 된다. 위와 같은 문제점을 해결하기 위해 본 논문에서는 적응형 군집화 기법을 제안하고 이를 적용한 협업 필터링 기법을 제안하고 있다. 이 기법은 크게 네 가지 방법으로 이루어진다. 첫째, 사용자와 아이템의 특성 벡터를 기반으로 사용자와 아이템 각각을 군집화 하여, 기존 협업 필터링 기법에서 유사 아이템, 사용자 집합을 생성하는데 소요되는 시간을 절약하며, 사용자 선호도 정보만을 이용한 부분 집합 생성보다 추천의 신뢰도를 높이고, 초기 평가 문제와 초기 이용자 문제를 일부 해소한다. 둘째, 미리 구성된 사용자와 아이템의 군집을 기반으로 군집간의 선호도를 이용해 추천을 수행한다. 사용자가 속한 군집의 선호도가 높은 순서대로 아이템 군집을 조회하여 사용자에게 제공할 아이템 목록을 구성하여, 추천 시스템의 부하 대부분을 모델 생성 단계에서 부담하고 실제 수행 시 부하를 최소화한다. 셋째, 누락된 사용자 선호도 정보를 사용자와 아이템 군집을 이용하여 예측함으로써 협업 필터링 추천 기법의 사용자 선호도 정보 희박성으로 인한 문제를 해소한다. 넷째, 사용자와 아이템의 특성 벡터를 사용자의 피드백에 따라 학습시켜 아이템과 사용자의 정성적 특성 정량화의 어려움을 해결한다. 본 연구의 검증은 기존에 제안되었던 하이브리드 필터링 기법들과의 성능 비교를 통해 이루어졌으며, 평가 방법으로는 평균 절대 오차와 응답 시간을 이용하였다.

카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법 (A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining)

  • 이동원
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.27-42
    • /
    • 2020
  • 인터넷이라는 가상 공간을 활용함으로써 물리적 공간의 제약을 갖는 오프라인 쇼핑의 한계를 넘어선 온라인 쇼핑은 다양한 기호를 가진 소비자를 만족시킬 수 있는 수많은 상품을 진열할 수 있게 되었다. 그러나, 이는 역설적으로 소비자가 구매의사결정 과정에서 너무 많은 대안을 비교 평가해야 하는 어려움을 겪게 함으로써 오히려 상품 선택을 방해하는 원인이 되기도 한다. 이런 부작용을 해소하기 위한 노력으로서, 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 구매의사결정 과정 중 정보탐색 및 대안평가에 소요되는 시간과 노력을 줄여주고 이탈을 방지하며 판매자의 매출 증대에 기여할 수 있다. 연관 상품 추천에 사용되는 연관 규칙 마이닝 기법은 통계적 방법을 통해 주문과 같은 거래 데이터로부터 서로 연관성 높은 상품을 효과적으로 발견할 수 있다. 하지만, 이 기법은 거래 건수를 기반으로 하므로, 잠재적으로 판매 가능성이 높을지라도 충분한 거래 건수가 확보되지 못한 상품은 추천 목록에서 누락될 수 있다. 이렇게 추천 시 제외된 상품은 소비자에게 구매될 수 있는 충분한 기회를 확보하지 못할 수 있으며, 또 다시 다른 상품에 비해 상대적으로 낮은 추천 기회를 얻는 악순환을 겪을 수도 있다. 본 연구는 구매의사결정이 결국 상품이 지닌 속성에 대한 사용자의 평가를 기반으로 한다는 점에 착안하여, 추천 시 상품의 속성을 반영하면 소비자가 특정 상품을 선택할 확률을 좀더 정확하게 예측할 수 있다는 점을 추천 시스템에 반영하기 위한 목적으로 수행되었다. 즉, 어떤 상품 페이지를 방문한 소비자는 그 상품이 지닌 속성들에 어느 정도 관심을 보인 것이며 추천 시스템은 이런 속성들을 기반으로 연관성을 지닌 상품을 더 정교하게 찾을 수 있다는 것이다. 상품의 주요 속성의 하나로서, 카테고리는 두 상품 간에 아직 드러나지 않은 잠재적인 연관성을 찾기에 적합한 대상이 될 수 있다고 판단하였다. 본 연구는 연관 상품 추천에 상품 간의 연관성뿐만 아니라 카테고리 간의 연관성을 추가로 반영함으로써 추천의 정확도를 높일 수 있는 예측모형을 개발하였고, 온라인 쇼핑몰로부터 수집된 주문 데이터를 활용하여 이루어진 실험은 기존 모형에 비해 추천 성능이 개선됨을 보였다. 실무적인 관점에서 볼 때, 본 연구는 소비자의 구매 만족도를 향상시키고 판매자의 매출을 증가시키는 데에 기여할 수 있을 것으로 기대된다.

Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지 (Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone)

  • 하으뜸;김정민;류광렬
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.123-132
    • /
    • 2013
  • 최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.

텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석 (A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis)

  • 감미아;송민
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.53-77
    • /
    • 2012
  • 본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.

CNN 보조 손실을 이용한 차원 기반 감성 분석 (Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis)

  • 전민진;황지원;김종우
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.1-22
    • /
    • 2021
  • 텍스트를 바탕으로 한 차원 기반 감성 분석(Aspect-Based Sentiment Analysis)은 다양한 산업에서 유용성을 주목을 받고 있다. 기존의 차원 기반 감성 분석에서는 타깃(Target) 혹은 차원(Aspect)만을 고려하여 감성을 분석하는 연구가 대다수였다. 그러나 동일한 타깃 혹은 차원이더라도 감성이 나뉘는 경우, 또는 타깃이 없지만 감성은 존재하는 경우 분석 결과가 정확하지 않다는 한계가 존재한다. 이러한 문제를 해결하기 위한 방법으로 차원과 타깃을 모두 고려한 감성 분석(Target-Aspect-Sentiment Detection, 이하 TASD) 모델이 제안되었다. 그럼에도 불구하고, TASD 기존 모델의 경우 구(Phrase) 간의 관계인 지역적인 문맥을 잘 포착하지 못하고 초기 학습 속도가 느리다는 문제가 있었다. 본 연구는 TASD 분야 내 기존 모델의 한계를 보완하여 분석 성능을 높이고자 하였다. 이러한 연구 목적을 달성하기 위해 기존 모델에 합성곱(Convolution Neural Network) 계층을 더하여 차원-감성 분류 시 보조 손실(Auxiliary loss)을 추가로 사용하였다. 즉, 학습 시에는 합성곱 계층을 통해 지역적인 문맥을 좀 더 잘 포착하도록 하였으며, 학습 후에는 기존 방식대로 차원-감성 분석을 하도록 모델을 설계하였다. 본 모델의 성능을 평가하기 위해 공개 데이터 집합인 SemEval-2015, SemEval-2016을 사용하였으며, 기존 모델 대비 F1 점수가 최대 55% 증가했다. 특히 기존 모델보다 배치(Batch), 에폭(Epoch)이 적을 때 효과적으로 학습한다는 것을 확인할 수 있었다. 본 연구에서 제시된 모델로 더욱 더 세밀한 차원 기반 감성 분석이 가능하다는 점에서, 기업에서 상품 개발 및 마케팅 전략 수립 등에 다양하게 활용할 수 있으며 소비자의 효율적인 구매 의사결정을 도와줄 수 있을 것으로 보인다.

P-Glycoprotein과 Multidrug Resistance Associated Protein을 발현하는 암세포와 종양에서 Tc-99m Sestamibi와 Tc-99m Tetrofosmin의 섭취율 비교 (Comparative Uptake of Tc-99m Sestamibi and Tc-99m Tetrofosmin in Cancer Cells and Tissue Expressing P-Glycoprotein or Multidrug Resistance Associated Protein)

  • 조정아;이재태;유정아;서지형;배진호;정신영;안병철;손상균;하정희;이규보
    • 대한핵의학회지
    • /
    • 제39권1호
    • /
    • pp.34-43
    • /
    • 2005
  • 목적: 인체대장암 HCT15/CL02 암세포와 인체 비소세포 폐암 A549세포를 대상으로 Pgp와 MRP발현을 조사하고, 세포와 이종이식된 종양조직에서 $^{99m}Tc$-MIBI와 tetrofosmin의 섭취정도를 비교하여 이들 방사성의약품의 Pgp와 MRP 추적자로서의 성능을 알아보고자 하였다. 또한 다약제내성 극복제인 CsA 처리에 의한 두 방사성 의약품의 암세포 내섭취정도를 비교해 보았다. 재료 및 방법: Pgp의 발현은 RT-PCR과 면역조직화학 염색으로, MRP발현은 MRPrl항체에 대한 western blot analysis와 면역조직화학 염색으로 확인하였다. 세포 섭취는 $37^{\circ}C$에서 $1{\times}10^6$개/ml 농도에서 MIBI와 tetrofosmin을 30분과 60분 동안 반응시킨 후 상층액과 침전물로 분리하여 각각의 방사능을 감마계수기로 측정하여, 50 ${\mu}M$의 cyclosporin A (CsA)를 처리한 성적과 비교하였다. 체내실험은 HCT15/CL02세포와 A549세포를 이종이식 한 누드마우스를 4군으로 구분하여, MIBI와 tetrofosmin 만을 주사한 군과, CsA를 70 mg/kg으로 1시간전에 주사한 후 체내분포를 측정한 군으로 구분하였다. MIBI와 tetrofosmin은 각각 370 KBq을 정맥주사하고 10분, 60분, 240분 후에 동물들을 희생시켜 종양조직내의 두 방사성의약품의 장기섭취율(%ID/gm)로 계산하여 비교하였다. 결과: HCT15/CL02세포와 A549세포에서 MIBI와 tetrofosmin의 섭취는 배양시간이 지남에 따라 증가하였으며 그 섭취정도는 MIBI가 tetrofosmin보다 높았다. CsA 50 ${\mu}M$에 의한 MIBI와 tetrofosmin의 섭취정도를 각각의 60분 대조군과 비교하면 각각 763%와 629% 증가하여 MIBI의 섭취증가 정도가 tetrofosmin보다 높았다. 체내에서 두 방사성의약품의 섭취정도는 유사하였다. CsA 처리군의 섭취정도는 각각의 대조군에 비교하여 MIBI는 10분에 114%, 60분에 257%, 240분에 396%로 증가하였으며, tetrofosmin은 10분에 110%, 60분에 205%, 240분에 410%로 증가하였다. HCT15/ CL02 세포실험에서도 두 방사성약품의 섭취정도에 유의한 차이가 없었으나, CsA를 처리하였을 때 MIBI와 tetrofosmin의 섭취율은 기저치보다 모두 증가하였다. CsA에 의한 MIBI와 tetrofosmin의 섭취율은 기저치보다 각각 10배와 2.4배 증가하여, MIBI의 섭취율이 tetrofosmin보다 1.2배에서 4배정도 높았다. HCT15/CL02 종양조직내의 섭취는 CsA 처치시 증가하였으나 MIBI와 tetrofosmin 간에 유의한 차이는 없었다. 결론: Pgp와 MRP를 발현하여 다약제내성을 나타내는 암세포에서 MIBI와 tetrofosmin 섭취율은 유사하였으나, Pgp와 MRP를 억제하는 CsA에 의한 섭취증가정도는 MIBI가 더 높았다. 그러나 두 약제 섭취율 증가의 차이는 동물실험에서는 관찰되지 않았다. 이러한 결과로 보아 MIBI와 tetrofosmin은 Pgp와 MRP에 의한 다약제내성의 발현을 평가할 수 있는 방사성의약품으로 판단되며, 다약제내성 극복제의 시험관내 효능평가에는 MIBI가 tetrofosmin보다 더 우수할 것으로 사료되었다.

한강과 경기만 지역 GIS 기반 통합수질모의 시스템 개발 (Development of GIS based Water Quality Simulation System for Han River and Kyeonggi Bay Area)

  • 이철용;김계현
    • 한국공간정보시스템학회 논문지
    • /
    • 제10권4호
    • /
    • pp.77-88
    • /
    • 2008
  • 서해 연안 일대의 급격한 도시화, 한강에 대한 수질오염총량관리제도의 도입 가능성, 충남 태안에서 있었던 유조선 기름 유출 사건 등에 기인하여 서해 연안에 대한 수질 관리의 요구가 증대되고 있는 상황이다. 그러나 이를 효율적으로 관리할 수 있는 수질관리 시스템은 부재한 실정이다. 따라서 이런 배경에서 한강과 경기만 일대 지역의 수질 환경을 감시하고 관리할 수 있는 GIS 기반의 효율적인 통합수질관리 시스템의 필요성이 대두되고 있다. 이 연구는 한강 유역과 한강 하구의 연안 해역인 경기만 일대의 통합적인 관리와 관리방안 마련을 지원하기 위한 시스템을 개발하는데 그 목적이 있다. 이를 위하여 관련된 위치 및 수질 속성자료를 GIS기반으로 통합하여 하나의 시스템으로 구현하였다. GIS 데이터베이스는 발생 및 배출 오염부하량 산정을 위해 수질오염총량관리제도 기술지침의 따라 설계되었으며, 수질모의를 위한 초기입력 자료도 포함하고 있다. 수질 예측과 최적관리방안을 제안하기 위해 각기 다른 모델을 각 구역에 적용하였는데, 한강에는 WASP7 모델을 적용하였고, 한강 하구의 경기만 일대에는 EFDC 모델을 적용하였다. WASP7 모델에 의한 한강 하구에서의 BOD, T-N, T-P 등 수질모의 결과는 다시 EFDC 모델의 초기자료로 이용되었다. 연구 결과를 통해 수질에 결정적인 영향을 미치는 수질오염원 집중지역을 확인할 수 있었고, 오염물질이 하천으로 유입되는 위치 및 계절적 요인이 수질에 미치는 영향도 확인할 수 있었다. 더불어 하천과 연안 해역의 수질 관계도 정량적으로 확인할 수 있었다. 연구 결과는 GIS기반의 통합수질모의 시스템이 수질 현황의 예측과 경제적인 수질 관리방안의 제시에 있어 이용 가능함을 보여주었다. 향후 연구에서는 경제성 평가 등과 같은 조금 더 세분화된 선택 기능의 구현을 통한 시스템 성능의 개선이 필요하다. 또한 시스템을 이용한 구체적인 수질관리방법론의 개발도 필요하다.

  • PDF

영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소 (Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation)

  • 김유섭;장정호
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.749-758
    • /
    • 2004
  • 본 논문에서는 미가공 말뭉치 데이터를 활용하여 영한 기계번역 시스템의 대역어 선택 시 발생하는 중의성을 해소하는 방법을 제안한다. 이를 위하여 은닉 의미 분석(Latent Semantic Analysis : LSA)과 확률적 은닉 의미 분석(Probabilistic LSA : PLSA)을 적용한다. 이 두 기법은 텍스트 문단과 같은 문맥 정보가 주어졌을 때, 이 문맥이 내포하고 있는 복잡한 의미 구조를 표현할 수 있다 본 논문에서는 이들을 사용하여 언어적인 의미 지식(Semantic Knowledge)을 구축하였으며 이 지식은 결국 영한 기계번역에서의 대역어 선택 시 발생하는 중의성을 해소하기 위하여 단어간 의미 유사도를 추정하는데 사용된다. 또한 대역어 선택을 위해서는 미리 사전에 저장된 문법 관계를 활용하여야 한다. 본 논문에서는 이러한 대역어 선택 시 발생하는 데이터 희소성 문제를 해소하기 위하여 k-최근점 학습 알고리즘을 사용한다. 그리고 위의 두 모델을 활용하여 k-최근점 학습에서 필요한 예제 간 거리를 추정하였다. 실험에서는, 두 기법에서의 은닉 의미 공간을 구성하기 위하여 TREC 데이터(AP news)론 활용하였고, 대역어 선택의 정확도를 평가하기 위하여 Wall Street Journal 말뭉치를 사용하였다. 그리고 은닉 의미 분석을 통하여 대역어 선택의 정확성이 디폴트 의미 선택과 비교하여 약 10% 향상되었으며 PLSA가 LSA보다 근소하게 더 좋은 성능을 보였다. 또한 은닉 공간에서의 축소된 벡터의 차원수와 k-최근점 학습에서의 k값이 대역어 선택의 정확도에 미치는 영향을 대역어 선택 정확도와의 상관관계를 계산함으로써 검증하였다.젝트의 성격에 맞도록 필요한 조정만을 통하여 품질보증 프로세스를 확립할 수 있다. 개발 된 패키지의 효율적인 활용이 내조직의 소프트웨어 품질보증 구축에 투입되는 공수 및 어려움을 줄일 것으로 기대된다.도가 증가할 때 구기자 열수 추출 농축액은 $1.6182{\sim}2.0543$, 혼합구기자 열수 추출 농축액은 $1.7057{\sim}2.1462{\times}10^7\;J/kg{\cdot}mol$로 증가하였다. 이와 같이 구기자 열수 추출 농축액과 혼합구기자 열수 추출 농축액의 리올리지적 특성에 큰 차이를 나타내지는 않았다. security simultaneously.% 첨가시 pH 5.0, 7.0 및 8.0에서 각각 대조구의 57, 413 및 315% 증진되었다. 거품의 열안정성은 15분 whipping시, pH 4.0(대조구, 30.2%) 및 5.0(대조구, 23.7%)에서 각각 $0{\sim}38.0$$0{\sim}57.0%$이었고 pH 7.0(대조구, 39.6%) 및 8.0(대조구, 43.6%)에서 각각 $0{\sim}59.4$$36.6{\sim}58.4%$이었으며 sodium alginate 첨가시가 가장 양호하였다. 전체적으로 보아 거품안정성이 높은 것은 열안정성도 높은 경향이며, 표면장력이 낮으면 거품형성능이 높아지고, 비점도가 높으면 거품안정성 및 열안정성이 높아지는 경향이 있었다.protocol.eractions between application agents that are developed using different