Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1536-1540
/
2010
자료기반 수문예측 모형은 서로 자기상관이 다른 자료계열에 대해 예측결과만으로 모형의 성능에 대한 상대비교가 어렵다. 그러나 관측치와 예측치간의 평균 오차만을 기준으로 판단하는 기존의 모형 성능평가 기법은 대부분 이러한 자료기반 예측모형의 특성을 고려하지 못하고 있다. 따라서 본 논문에서는 자료기반 수문 예측모형의 성능을 보다 객관적으로 평가할 수 있는 새로운 모형 성능평가 기법인 상대 상관계수(Relative Correlation Coefficient; RCC) 제시하였다. RCC는 자기상관계수에 대한 관측치와 예측치간의 상관계수의 비로 산정되며, 자기상관정도에 따라 예측성능의 결과가 달라진다. 본 논문에서는 다양한 자기상관을 가지는 선형, 비선형 자료계열에 대해 자료기반 수문모형을 적용하여 기존 모형평가 기법의 한계를 제시하였다. 그리고 기존의 성능평가 기법과 RCC를 비교분석하여 자료기반 수문예측모형의 성능평가에 있어 RCC가 보다 객관적이고 일관성 있는 성능평가가 가능함을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2001.10c
/
pp.10-12
/
2001
와이드 이슈 슈퍼스칼라 프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim ILP)을 향상시키는 기법이다. 본 논문에서는 명령어 수준 병렬성을 이용하여 성능을 향상시키기 위하여 데이터 값을 미리 예측하여 병렬로 이슈하고 수행하는 값 예측기의 성능을 비교분석 한다. 먼저 값 예측기 종류별로 성능을 측정한다 그리고 테이블의 갱신시점, 트레이스 캐시 유무 및 명령윈도우 크기에 따른 값 예측기의 성능영향을 평가분석 한다. 성능분석 결과 최근 값 예측기가 간소한 하드웨어 구성에도 불구하고 우수한 성능을 보였다. 그리고 예측테이블 갱신시점과 트레이스캐시의 사용이 값 예측기의 성능향상에 영향을 주었다.
Bulletin of the Society of Naval Architects of Korea
/
v.31
no.4
/
pp.22-25
/
1994
선체성능, 선박운항성능 및 기관성능의 현황파악과 예측을 하는 것은 선박설계자, 선박운항자 및 선박관리운영자에게 설계, 보선관리 및 용역관리상 대단히 중요하다. 선체성능의 전산원용예측에 관한 대부분의 문헌은 모형수조시험 및 공시해상시험의 자료를 수식화하는 데 집중하고 있다. 따라서 현재까지 자료의 수식화, 예측된 자료와 성능시험결과치의 상관기법 및 PC soft ware를 이용한 선박성능예측의 체계적 접근법 등에 관한 연구가 활발히 진행되어 왔다. 또한 선박의 Abstract Log Book의 자료 및 주기관 성능자료의 수식화, PC soft ware 개발에 의한 선박운 항성능 및 기관성능예측에 대한 연구가 역시 수행되고 있다. 이와 관련하여 본 고에서는 선체 성능(저항과 추진계수), 선박운항성능 및 주기관성능의 예측에 관하여 그 개요를 소개코져 한다.
Proceedings of the Korean Information Science Society Conference
/
2001.10c
/
pp.13-15
/
2001
최근에 이르러 프로세서의 병렬성을 분석적 기법으로 예측하기 위한 연구가 활발해지면서 프로세서의 성능 예측 모델에 대한중요성이 대두되고 있다. 그러나 기존의 연구는 현재 광범위하게 사용되고 있는 다중 분기 예측법을 이용하는 프로세서에 대하여 분기 차수와 관계없는 재귀적 성능 모델을 제공해주지 않는다. 본 논문에서는 이것을 해결하기 위하여, 매 싸이클마다 명령어 종속 트리를 구성하고 종속인 명령어 간에 상대적인 병렬도 갓을 부여하여 성능 예측 모델 입력 데이타를 측정하였다. 그 곁과, 다중 분기 예측법을 사용하는 프로세서에서 정수형 프로그램에 대한 성능을 기존의 성능모델보다 작은 상대 오차로 예측할 수 있다.
본 연구에서는 SOFC 시스템 설계기술 개발을 위한 기초 연구로서 전산해석을 이용한 SOFC 성능예측 기법을 개발하였다. 기본설계 단계에서 SOFC의 성능을 개략적으로 예측할 수 있는 1차원 예측 모델을 정립하였으며, 온도, 조성, 전해질, 전극 두께 등을 비롯한 다양한 조건 변화에 따른 성능예측을 수행하여 실험값과 비교한 결과 최대전력밀도 조건에서 23%의 오차를 갖는 것으로 나타났다. 또한 Stack 제작단계에서 다양한 운전조건과 형상변화에 따른 SOFC 성능 변화를 예측할 수 있는 3차원 해석기법을 정립하였으며, 최대전력밀도에서 5.1%의 오차를 보였다. 포괄적인 열 및 물질 전달 현상과 전기화학반응을 3차원적으로 해석함으로써 보다 정확한 예측이 가능하였다. 또한 수소와 적당량의 수분을 함께 공급할 경우 SOFC 성능이 향상되는 것으로 나타났다. 본 연구에서 개발된 기술을 활용할 경우 시제품 제작 전에 전지시스템의 성능을 미리 예측할 수 있으므로, 향후 제품 개발시 제작비용 절감과 설계기간 단축에 기여할 수 있을 것으로 기대된다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.249-250
/
2020
본 논문에서는 VVC 화면간 예측 모드 Combined Inter-intra Prediction(CIIP)의 화면내 예측 과정에서의 향상된 PLANAR 예측 방법을 제안한다. Combined Inter-intra Prediction(CIIP) 모드는 화면간 예측 신호와 PLANAR 모드로 생성되는 화면내 예측 신호를 가중합 하여 최종 예측 신호를 생성하는 모드이다. 제안하는 방법은 화면간 예측 신호로 생성된 예측 샘플을 PLANAR 모드 예측 과정에서 우측 및 하단의 참조 샘플로 사용한다. 이후 PLANAR 예측 및 가중합 하여 예측 신호를 만들어내는 것은 기존 CIIP와 동일하다. 제안하는 방법의 성능 평가를 위하여 VVC의 참조 소프트웨어인 VTM 9.0에 구현하였으며, 기존 VTM 9.0과 부호화 성능을 비교한 결과로 휘도 성분에서 0.01 % 부호화 성능 감소를 보이고 색차 성분에 대하여 각각 0.17%, 0.13% 부호화 성능 향상을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2002.04b
/
pp.1317-1320
/
2002
네트워크에서 실시간으로 통신 트래픽의 변화량을 감시하고 시계열 분석을 이용해 변화량의 추이를 모형화한다. 트래픽의 변화량을 모형화하게 되면 트래픽에 대한 예측이 가능하게 되므로 트래픽 예측을 이용하여 성능관리를 수행할 수 있다. 본 연구에서는 실시간 트래픽을 이용한 성능관리 시스템에 대해 다룬다. 기존의 성능관리 시스템은 SNMP를 이용한 MIB-II 정보를 바탕으로 하는 분석 방법으로 이는 누적 데이터를 기본으로 하는 관리 방법으로 이상 징후의 판단이 즉각적이지 않았고 또한 모니터링을 수행하기 위해서는 통신 트래픽의 증가를 가져왔다. 대부분의 성능관리 시스템은 단순히 망에서의 트래픽이나 에러율 등을 관리자에게 보고하는 데 그치고 있어 능동적인 성능관리가 이루어지지 않는다. 따라서, 본 논문에서는 실시간 트래픽 감시를 위해 네트워크에 들어오거나 나가는 트래픽의 양을 측정하여 분석하고, 이 정보를 바탕으로 특정 시점 이후의 트래픽 추이를 모형화하여 미래의 트래픽 양을 예측하고, 예측된 정보를 바탕으로 하는 성능관리 시스템에 대해 연구한다. 예측 알고리즘으로는 시계열 분석을 통해 시계열 자료의 예측을 가능하게 하는 알고리즘으로 설계한다. 이 성능관리시스템을 바탕으로 망 관리자가 전체 통신 네트워크의 부하 상태를 예측하여 신속하게 대응을 할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
1999.10c
/
pp.24-26
/
1999
본 논문에서는 주어진 윈도우에 대하여 수퍼스칼라 프로세서의 하드웨어를 구성하는 기본 요소인 인출율과 연산 유닛의 개수로 표현되는 성능 예측 모델을 제시하였다. 이때, 수퍼스칼라 프로세서에서 실행되는 벤치마크 프로그램은 매 싸이클당 각 명령어 개수가 시행되는 확률과 분기 예측 정확도에 의하여 특성화된다. 초기의 실험으로 각종 파라미터를 획득한 후에는 다양한 연산유닛과 인출율을 갖는 수퍼스칼라 프로세서의 성능을 본 논문에서 제안하는 모델에 의하여 간단하게 구할 수 있다. 명령어 자취 모의실험(trace-driven simulation)으로 측정한 성능과 본 논문에서 제안하는 성능 예측 모델에 의한 성능을 비교한 결과, 3.8%의 평균오차를 기록하였다.
Proceedings of the Korean Information Science Society Conference
/
2000.04a
/
pp.639-641
/
2000
캐쉬를 사용하는 분산 공유 메모리 시스템에서는 캐쉬들 사이의 일관성 유지를 위한 지연 시간이 성능에 큰 영향을 미친다. 최근에는 각 공유 메모리의 일반적인 접근 패턴을 학습하여 일관성 유지의 예측적 수행을 가능하게 하는 메모리 공유 패턴 예측기가 연구되고 있다. 기존의 메모리 공유 패턴 예측기는 패턴 정보를 저장하기 위해서 모든 메모리 블락마다 예측 테이블들을 할당하지만 실제로 성능 향상에 도움을 주는 테이블들은 소수에 불과하다. 본 논문에서는 적은 양의 패턴 저장 공간을 사용하면서 기존의 예측기와 유사한 성능을 낼 수 있는 캐쉬 구조의 메모리 공유 패턴 예측기를 제안한다, 제안된 예측기에서는 좋은 성능을 내는 예측 테이블들을 선택적으로 저장하게 하는 효율적인 테이블 교체 기법이 요구된다. 본 논문에서는 LRU 교체 기법을 캐쉬 구조의 예측기에 적용시켰을 때의 문제점을 분석하고 제안된 예측기의 특성에 적합한 테이블 교체 기법을 제안한다.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2004.07b
/
pp.1117-1120
/
2004
경제적인 공정분석과 최적화를 위해서는 컴퓨터를 이용한 플라즈마 예측모델이 요구되고 있다. 본 연구에서는 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마 증착공정 모델을 개발한다. GRNN의 예측성능은 패턴층 뉴런의 가우시안 함수를 구성하는 학습인자, 즉 spread에 의존한다. 종래의 모델에서는 모든 가우시안 함수의 spread가 동일한 값에서 최적화되었으며, 이로 인해 모델의 예측성능을 향상시키는 데에는 한계가 있었다. 본 연구에서는 유전자 알고리즘 (GA)를 이용하여 다변수 spread를 최적화하는 기법을 개발하였으며, 그 성능을 PECVD 공정에 의해 증착된 SiN 박막의 증착률에 적용하여 평가하였다. $2^{6-1}$ 부분인자 실험계획법에 의해 수집된 데이터를 이용하여 신경망을 학습하였고, 모델적합성 점검을 위해 별도의 12번의 실험을 수행하였다. 가우시안 함수의 spread는 0.2에서 2.0까지 0.2간격으로 증가시켰으며, 최적화한 GA-GRNN모델의 예측성능은 6.6 ${\AA}/min$이었다. 이는 종래의 방식으로 최적화한 모델의 예측성능 (13.5 ${\AA}/min$)과 비교하여 50.7% 향상된 예측성능이며, 이러한 향상은 제안한 GA-GRNN 모델이 플라즈마 공정 모델의 예측성능을 증진하는데 매우 효과적임을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.