• 제목/요약/키워드: 성능변수

검색결과 3,819건 처리시간 0.028초

강인한 특징 변수 선별과 신경망을 이용한 장면 전환점 검출 기법 (Robust Feature Selection and Shot Change Detection Method Using the Neural Networks)

  • 홍승범;홍교영
    • 한국멀티미디어학회논문지
    • /
    • 제7권7호
    • /
    • pp.877-885
    • /
    • 2004
  • 본 논문은 여러 가지 장면 검출 방식들 중 강인한 특징 변수들의 선별과 신경망을 이용하여 향상된 장면 전환점 검출 기법을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임 간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임 간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 단일 특징보다는 상호 보완 관계를 갖는 강인한 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 본 논문에서 강인한 특징 변수들을 선택하기 위해, 데이터 마이닝 기법 중 대표적인 CART(classification and regression tree)를 이용하고, 다차원 변수에 따른 임계값을 선정하기 위해 역전파 신경망(backpropagation neural net)을 이용한다. 제안한 방식과 대표적인 특징 추출인 PCA(principal component analysis)기법을 비교하여 특징 변수의 추출 성능을 평가한다. 실험 결과에 따라 제안된 방식이 PCA 기법과 비교하여 우수한 성능이 나타남을 확인한다.

  • PDF

다중센서 융합 기반 무인잠수정 위치추정 개선 (Improvement of Position Estimation Based on the Multisensor Fusion in Underwater Unmanned Vehicles)

  • 이경수;윤희병
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.178-185
    • /
    • 2011
  • 본 논문은 상태변수 평준화 및 되먹임구조를 이용하여 무인잠수정의 위치추정을 개선하기 위한 다중센서 융합 기반의 위치추정 알고리즘을 제안한다. 이를 위해 먼저 상대적으로 오차가 큰 주 센서인 INS와 오차가 작은 보조센서인 DVL에서 측정되는 상태변수를 예측단계 이전에 융합하여 상태변수 평준화 과정을 수행한다. 그 다음, 평준화된 상태변수를 각 필터에 입력하여 예측 및 수정단계의 칼만 필터링 과정을 통해 최종 수정된 상태변수를 융합시키며, 마지막으로 이를 다시 주센서에 되먹임함으로서 무인잠수정의 위치추정을 개선한다. 평가를 위해 무인잠수정의 기동모델에 대한 시뮬레이션을 실시하여 기동경로를 생성하고 제안 알고리즘을 적용하여 위치추정 성능을 확인한다. 평가 결과, 제안 알고리즘이 다중센서 융합 알고리즘 중 가장 우수한 위치추정 성능을 보였으며, 또한 기동침로가 변경되는 구간에서도 강인한 위치추정이 가능하다는 것이 증명되었다.

3차 회선 보간법에 적응적 매개변수를 적용한 영상 보간 (An Image Interpolation by Adaptive Parametric Cubic Convolution)

  • 유재욱;박대현;김윤
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권6호
    • /
    • pp.163-171
    • /
    • 2008
  • 본 논문에서는 고화질, 고해상도로 영상을 확대하기 위한 적응적인 매개변수가 적용된 3차 회선 보간법을 제안한다. 제안하는 보간법에서는 영상이 가지는 주파수 특성을 반영한 보간을 수행하기 위해 1단계 보간 과정에서 새롭게 정의한 비용함수를 이용하여 3차 회선 보간법의 매개변수를 적응적으로 구하고, 2단계 보간 과정에서는 1단계에서 구한 적응적인 매개변수를 적용하여 3차 회선 보간법을 수행한다. 영상의 주파수 특성이 고려된 적응적인 매개변수의 사용은 보간 커널의 성능을 향상시켜 동일한 매개변수를 사용하는 이전의 3차 회선 보간법보다 결과 영상의 화질이 우수하다. 컴퓨터 실험 결과를 통해 제안하는 보간법이 이전의 보간법들보다 PSNR이 약 $0.5{\sim}4dB$ 높아 객관적인 성능에서 나은 결과를 나타냈으며, 결과 영상의 확대를 통한 비교에서 영상이 부드럽고 에지가 선명하게 나타남으로 주관적 화질이 우수함을 보였다.

  • PDF

스프레드시트를 활용한 지도학습 인공신경망 매개변수 최적화와 활성화함수 기초교육방법 (Supervised Learning Artificial Neural Network Parameter Optimization and Activation Function Basic Training Method using Spreadsheets)

  • 허경
    • 실천공학교육논문지
    • /
    • 제13권2호
    • /
    • pp.233-242
    • /
    • 2021
  • 본 논문에서는 비전공자들을 위한 교양과정으로, 기초 인공신경망 과목 커리큘럼을 설계하기 위해, 지도학습 인공신경망 매개변수 최적화 방법과 활성화함수에 대한 기초 교육 방법을 제안하였다. 이를 위해, 프로그래밍 없이, 매개 변수 최적화 해를 스프레드시트로 찾는 방법을 적용하였다. 본 교육 방법을 통해, 인공신경망 동작 및 구현의 기초 원리 교육에 집중할 수 있다. 그리고, 스프레드시트의 시각화된 데이터를 통해 비전공자들의 관심과 교육 효과를 높일 수 있다. 제안한 내용은 인공뉴런과 Sigmoid, ReLU 활성화 함수, 지도학습데이터의 생성, 지도학습 인공신경망 구성과 매개변수 최적화, 스프레드시트를 이용한 지도학습 인공신경망 구현 및 성능 분석 그리고 교육 만족도 분석으로 구성되었다. 본 논문에서는 Sigmoid 뉴런 인공신경망과 ReLU 뉴런 인공신경망에 대해 음수허용 매개변수 최적화를 고려하여, 인공신경망 매개변수 최적화에 대한 네가지 성능분석결과를 교육하는 방법을 제안하고 교육 만족도 분석을 실시하였다.

시뮬레이션을 이용한 MIND 형 병렬 컴퓨터의 성능분석

  • 김종현
    • ETRI Journal
    • /
    • 제10권3호
    • /
    • pp.101-112
    • /
    • 1988
  • 본 연구에서는 과학계산용 병렬 컴퓨터 시스팀의 구조를 설계하고, 설계된 컴퓨터 구조의 소프트웨어 시뮬레이터를 개발하였으며, 여러가지 시뮬레이션을 통하여 시스팀의 성능을 분석하였다. 설계된 시스팀은 H/V-bus 병렬 처리 시스팀 아키텍쳐에 기반을 둔것으로 각종 과학계산을 위한 고속의 프로세서간 통신 메카니즘이 확장 설계되었다. SLAM II 및 FORTRAN을 이용하여 개발된 시뮬레이터는 시스팀 변수들을 이용하여 프로세서의 수와 속도 및 통신 메카니즘의 속도를 쉽게 변화시킬 수 있게하여 여러 조건하에서의 시스팀 성능을 분석하는데 사용되었다. 또한 실제 프로그램이 수행되는 상황에서 프로세서 및 통신 메카니즘의 속도가 시스팀 전체 성능에 미치는 영향을 측정하고 분석하기 위하여 벤치마크를 시뮬레이터를 이용하여 풀었다.

  • PDF

SUI 채널 환경에서 FTN 신호를 적용한 DVB-T2 수신 성능 분석 (Reception Performance of DVB-T2 system with Faster-than Nyquist Signaling in SUI Channel)

  • 박명철;한동석
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.240-241
    • /
    • 2016
  • 본 논문은 FTN(faster-than-Nyquist) 신호가 적용된 DVB-T2 시스템의 동기 알고리듬에 미치는 영향에 대하여 분석하였다. 파일럿 기반의 동기 알고리듬은 FTN 신호의 간섭 영향으로 인하여 동기 성능의 열화가 발생한다. 기존의 DVB-T2 시스템을 기반으로 하여 FTN 변수에 따른 성능의 변화를 실험으로 분석하고 SUI 채널 환경에서의 성능을 분석하였다.

  • PDF

ACDE2: 수렴 속도가 향상된 적응적 코시 분포 차분 진화 알고리즘 (ACDE2: An Adaptive Cauchy Differential Evolution Algorithm with Improved Convergence Speed)

  • 최태종;안창욱
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1090-1098
    • /
    • 2014
  • 이 연구는 단봉 전역 최적화 성능이 개선된 적응적 코시 분포 차분 진화 알고리즘을 제안한다. 기존 적응적 코시 분포 차분 진화 알고리즘은(ACDE) 개체의 다양성을 보장하여 다봉 전역 최적화 문제에 우수한 "DE/rand/1" 돌연변이 전략을 사용했다. 그러나 이 돌연변이 전략은 수렴 속도가 느려 단봉 전역 최적화 문제에 단점이 있다. 제안 알고리즘은 "DE/rand/1" 돌연변이 전략 대신 수렴 속도가 빠른 "DE/current-to-best/1" 돌연변이 전략을 사용했다. 이때, 개체의 다양성이 부족하여 발생할 수 있는 지역 최적해로의 수렴을 방지하기 위해서 매개변수 초기화 연산이 추가됐다. 매개변수 초기화 연산은 특정세대를 주기로 실행되거나 또는 선택 연산에서 모든 개체가 진화에 실패하는 경우 실행된다. 매개변수 초기화 연산은 각 개체들의 매개변수에 탐험적 특성이 높은 값을 할당하여 넓은 공간을 탐색할 수 있도록 보장한다. 성능 평가 결과, 개선된 적응적 코시 분포 차분 진화 알고리즘이 최신 차분 진화 알고리즘들에 비해 특히, 단봉 전역 최적화 문제에서 성능이 개선됨을 확인했다.

다목적함수를 이용한 PDM 모형의 유량 분석 (Prediction of Stream Flow on Probability Distributed Model using Multi-objective Function)

  • 안상억;이효상;전민우
    • 한국방재학회 논문집
    • /
    • 제9권5호
    • /
    • pp.93-102
    • /
    • 2009
  • 본 연구는 미호천 유역을 대상으로 유량곡선의 세부적인 특성을 고려한 다목적함수를 적용하여 Probability Distribution Model(PDM) 모형의 유량모의성능을 검토하였다. PDM은 유역을 한 개의 단위구역으로 개념화한 집중형 강우유출모형으로 영국의 지역화 연구 및 홍수량 산정방법에 대표적으로 이용되고 있다. PDM 모형의 5개 매개변수를 Monte Carlo 방법에 기반을 둔 분석도구(MCAT, Monte Carlo Analysis Toolkit)를 활용하여 사후검정분포, 검정근거 및 민감도 분석 등을 수행하였으며, 모형의 매개변수 중 cmax와 k(q)만이 뚜렷한 검정 근거가 있고 나머지 변수들은 동등성의 영향을 확인하였다. 또한, 유량곡선의 고유량 및 저유량의 특성을 맞춘 목적함수의 Trade-off를 고려한 매개변수의 파레토 최적해를 산정한 결과, 모든 목적에 최대한 부합하는 유량 산정의 가능성을 제시하였다. 검정(calibration)기간에서 NS*E=0.035, FSB=0.161, FDBH= 0.809로 안정적이며 만족할만한 모의성능을 나타내었고, 검증(validation)기간에 대해서도 안정적인 모의성능을 나타내었다.

기계학습을 이용한 레이더 강우추정 기법 연구 (A study of quantitative precipitation estimation method using advanced machine learning algorithms.)

  • 신주영;노용훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.58-58
    • /
    • 2019
  • 최근 기계학습기법에 대한 활발한 연구로 인하여 많은 기계학습기법들이 개발되었다. 이러한 최신기계학습기법은 기존에 사용되어온 기계학습기법과 경험식들보다 자연현상을 예측하고 재현하는데 높은 성능을 보이는 것으로 알려져 있다. 레이더 자료를 이용한 강우추정 기법으로는 ZR관계식이 널리 사용되고 있다. 이상적인 조건에서는 ZR 관계식을 이용한 레이더 강우추정이 양호한 성능을 보이나, 실제 레이더 자료를 이용한 강우추정은 이상적인 환경이 아닌 경우가 매우 많다. 이런 ZR관계식의 한계점을 보완하기 위한 방법으로 기계학습기법을 이용한 레이더 강우추정 기법들이 개발되었으나, 현재 한국의 레이더 자료를 대상으로 해서는 많은 연구가 진행되어 오지 않고 있다. 레이더 자료를 이용한 강우추정의 정확도 향상을 위해서는 최신 기계학습기법들의 레이더 강우추정 기법에 대한 적용가능성을 평가해 볼 필요성이 있다. 본 연구에서는 random forest, stochastic gradient boosted model, extreme learning machine의 강우 레이더 강우추정 기법으로의 적용성을 평가하였다. 강우추정 기법 개발 및 성능 비교를 위해서 2018년 광덕산 이중편파 레이더 자료를 이용하였다. 다양한 이중편파 매개변수 조합을 레이더 강우추정 기법의 입력변수로 적용하였다. 기존 연구의 사용되어 온 ZR관계식의 매개변수를 또한 강우사상과 이중편파 매개변수 조합을 이용하여 추정하였다. 기계학습을 적용한 레이더 강우추정 기법이 ZR관계식보다 상관계수와 제곱근오차를 기준으로 높은 강우추정 정확도를 보였다. 특히 개발된 강우추정 기법은 호우사상에서 높은 정확도를 보이는 것을 확인 할 수 있었다. 적용된 기계학습 기법 중에서는extreme learning machine이 레이더 강우추정기법 개발에 가장 적합한 것으로 나타났다.

  • PDF

데이터마이닝을 이용한 심혈관질환 판별 모델 방법론 연구 (A study of methodology for identification models of cardiovascular diseases based on data mining)

  • 이범주
    • 문화기술의 융합
    • /
    • 제8권4호
    • /
    • pp.339-345
    • /
    • 2022
  • 심혈관 질환은 전 세계적으로 주요 사망원인들 중 하나이다. 본 연구는 보다 우수한 심혈관질환 판별 모델을 생성하기 위한 방법에 대한 연구로써, 3가지 변수 선택법과 7가지 머신러닝 알고리즘을 바탕으로 사회인구학적 변수들을 이용하여 고혈압과 이상지질혈증 판별모델들을 생성하고, 생성된 모델들의 성능을 비교 평가한다. 본 연구의 결과에서는 두 가지 질병 모두에서, 전체변수 및 correlation-based feature subset selection 메소드 기반 모델들에서는 naive Bayes 모델이 다른 머신러닝을 이용한 모델들보다 다소 우수한 판별 성능이 있는 것으로 나타났고, wrapper 메소드 기반 변수 선택법에서는 logistic regression 모델이 다른 모든 모델보다 성능이 다소 우수한 것으로 나타났다. 본 연구의 결과는 원격의료 및 대중보건 분야에서 향후 한국인의 심혈관질환 판별 및 예측 모델 생성을 위한 참고자료로 활용될 수 있을 것으로 기대된다.