• Title/Summary/Keyword: 성과 예측

Search Result 16,728, Processing Time 0.05 seconds

Forecasting monthly precipitation of Gyeongan-cheon watershed using teleconnection with global climate indices (글로벌 기후지수와의 원격상관을 이용한 경안천 유역의 월 강수량 예측)

  • Kim, Chul-gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Nam-won;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.314-314
    • /
    • 2019
  • 가뭄대응 및 이수분야 활용을 위한 장기 기상예측정보 확보를 위해, 경안천 유역을 대상으로 전구기후지수의 원격상관 패턴을 이용하여 통계적 기반의 다중회귀모형을 구성하고 월 강수량의 예측가능성을 평가하였다. 예측인자로서 미국 NOAA에서 제공하는 기후지수 중 총 37개의 지수에 대해 1948~2018년의 월 자료를 이용하였으며, 예측대상인 경안천 월 강수량은 1966~2018년의 유역평균 강수량 자료를 활용하였다. 각 기후지수별 1~24개월 선행자료와 예측대상년도 월 강수량과의 상관분석을 통해 상관성이 높은 기후자료를 선별하여 다중회귀모형의 독립변수로 적용하였다. 예측대상년도를 기준으로 과거 40년의 자료(월 강수량 및 월 기후지수)를 보정자료와 검정자료로 구분(20년씩 무작위로 추출)하고, 보정기간에 대해 도출된 회귀모형 중 검정기간을 대상으로 예측성이 좋은 100개의 회귀모형을 선별하여 예측대상기간에 대한 예측모형으로 활용하였다. 2006~2018년에 대해 전망기간별(1개월, 3개월, 6개월, 12개월)로 각 월별 100개 회귀모형으로 부터의 예측값(예측치의 범위)이 실제 관측치를 포함하는 경우를 월별로 분석한 결과 10월이 가장 높고(83%), 11월(81%), 1월(79%), 8월(77%), 6월(75%), 12월(71%)의 순으로 높게 나타났으며, 상대적으로 7월(29%)과 3월(44%)의 예측성이 낮은 것으로 나타났다. 통계적 모형의 특성상 전망기간에 따른 예측의 정확도는 비례하지 않았다. 예측치의 편차는 크지 않지만 예측성이 낮게 나타나는 기간(3월, 2월)과 예측성은 높지만 예측범위가 크게 나타나는 기간(8월, 6월)에 대해서는 예측모형의 재검토 및 다양한 규모의 유역에 대한 적용을 통해 예측인자 추가 및 보완 등을 수행할 예정이다.

  • PDF

Pre- and Post-Processors of Ensemble Streamflow Prediction System (앙상블 유량예측 시스템의 사전 및 사후처리에 관한 연구)

  • Kang, Tae-Ho;Kim, Young-Oh;Hong, Il-Pyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.264-268
    • /
    • 2008
  • 미래 발생 가능한 수문 및 기상현상의 예측과정은 지식의 부족과 자연현상의 다양성으로 인해 불확실성을 포함하게 된다. 하지만 많은 예측들은 아직까지 확정적으로 제공되고 있으며, 결과적으로 예측결과의 불확실성 정도를 제공하지 못하고 있다. 앙상블 유량예측(ESP, Ensemble Streamflow Prediction)은 이러한 불확실성을 고려하여 수자원시스템의 의사결정에 있어 중요한 요소 중 하나인 유량예측을 수행할 수 있는 방법이다. 하지만 ESP의 결과는 기상자료, 유역 초기조건, 수문모형의 매개변수, 단순화된 수문모형에 의해 비교적 큰 불확실성을 포함하게 되며, 따라서 실제적인 현업에서의 사용을 위해서는 불확실성 정도를 줄이기 위한 사전 및 사후처리 과정이 요구된다. 본 연구에서는 국내에서 활용 가능한 기후 예보자료를 사용하여 앙상블 유량예측에 적용할 수 있는 사전처리 방안들을 검토하고, 국내에서 사후처리를 위해 적용되었던 최적선형 보정기법에 더해 다양한 기법들을 강우유출모형인 TANK모형의 모의결과 보정에 적용하였다. 사전 및 사후처리를 적용한 결과 기상자료와 유량예측과정에 존재하는 불확실성을 저감시키는 것이 가능하였다. 특히 사전 및 사후 처리가 동시에 적용되었을 경우 그 향상 정도가 단순히 각각의 방법에 의한 향상 정도를 합한 것보다 높게 나타날 수 있음이 확인되었다. 사전 및 사후처리를 동시에 적용한 경우 이수기에는 RPS(Ranked Probability Score) 평가방법 내에서 54%를, 홍수기에는 8%를 향상시키는 것이 가능하였다.

  • PDF

Combining Value and Spatial Locality for Value Prediction (데이터 값 예측기를 위한 값 지역성과 공간 지역성 혼합)

  • 이종찬;최재혁;김정진;최상방
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.928-930
    • /
    • 2004
  • 명령어간의 데이터 종속 관계는 동적으로 스케줄 되는 파이프라인 프로세서의 병렬 처리에 중요한 장애로 남아 있다. 마이크로프로세서의 데이터 종속에 기인한 파이프라인 대기 시간을 줄일 대표적인 두 가지 방법으로 생성 값의 지역성에 기초를 둔 데이터 값 예측과 공간 지역성에 기반으로 예측하는 주소 예측이 있다. 본 논문에서는 성능 개선을 위해 이 두 가지 기술을 독립적으로 수행하는 것 보다 혼합한 형태의 예측이 더 좋은 예측 정확성이 나타나는 것을 보인다.

Assessing the Utility of Rainfall Forecasts for Weekly Groundwater Level Forecast in Tampa Bay Region, Florida (주단위 지하수위 예측 모의를 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로)

  • Hwang, Syewoon;Asefa, Tirusew;Chang, Seungwoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • 미래 기후 정보를 이용한 수문 환경의 단기 미래 예측은 안정적 수자원 공급을 위한 필수적 과제이다. 미국 플로리다 주 중서부 템파지역에서는 주요 수자원 중 하나인 지하수의 효과적 활용을 위해 지하수위 인공신경망 모델 (GWANN)을 개발하여 피압 대수층과 비피압 대수층에 대한 주 단위 평균 지하수위를 월별로 예측하고 그 결과를 수자원 공급 의사 결정에 반영하고 있다. 본 논문은 템파지역에 대한 GWANN 모델을 이용한 지하수위 예측 시스템을 소개하고 모델의 기후 입력 자료의 민감도를 분석함으로써 양질의 기후 정보에 대한 현 시스템의 활용성을 검토하였다. 2006년과 2007년에 대한 연구 결과, 관측 자료를 최적 예측 시나리오 (the best forecast)로 가정하여 적용한 결과는 지하수위 관측 지점에 따라 큰 차이를 보였지만 일반적으로 현 시스템 (현 시점의 실시간 주 단위 평균 강우량을 향후 4주간 동일하게 적용함) 에 비해 예측 성능이 개선되는 것으로 나타났다. 더불어 강우 관측 자료의 백분위 (percentile forecast; 20분위, 50분위, 80분위)를 강우 예측 자료로 활용한 경우에도 현 시스템과 비교하여 일부 나은 결과를 보여주었다. 그러나 지하수위 예측 모델을 활용하지 않고 현 시점의 지하 수위가 지속된다고 가정하는 경우 (na$\ddot{i}$ve model) 향후 2주간의 예측 결과가 best forecast 경우에 비해 높은 정확도를 보이는 등, GWANN 모델의 단기 예측에 대한 양질의 강우 예측 정보의 활용성은 낮으며, 향후 3주 이상에 대한 예측 성능에 있어 best forecast결과가 na$\ddot{i}$ve model 결과에 비해 높은 정확도를 보이기 시작하는 것으로 나타났다. 또한 GWANN 모델의 예측 성능은 적용 기간과 지역 및 지하대수층의 특성에 따라 큰 다양성을 가지는 단점을 보여 강우 예측 자료 활용에 앞서 모델 개선의 필요성이 있다고 판단된다. 본 연구는 단기수자원 공급 계획 수립을 위하여 사용되는 지역 모델링 시스템에 대한 기후 예측정보의 활용성 평가를 위한 방법론으로 고려될 수 있을 것으로 기대된다.

Applicability evaluation from rainfall forecasting (예측 강우 자료의 적용성 평가 연구)

  • Yu, Myungsu;Yi, Jaeeung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.3-3
    • /
    • 2015
  • 임진강 유역면적은 $8,138.9km^2$이나 이 중 62.9%인 $5,108km^2$가 군사분계선 이북에 놓여있어 유역특성에 따른 수문량을 분석하는 데 어려움이 있다. 1996년, 1998년, 1999년 및 2011년 임진강 유역의 이상 강우로 인해 약 1조 원의 재산피해와 136명의 인명피해가 발생하였다. 이처럼 국지성 호우의 발생 여부 및 강우의 지역적 편차 등 수문 정보를 예측하지 못하여 상황 대처가 어려운 실정이다. 따라서 미계측 유역이 많은 임진강 유역의 홍수피해 최소화를 위해 예측 강우와 같은 수문 정보의 필요성이 증대되고 있다. 본 연구에서는 임진강 유역 중 미계측 유역이 97%에 달하는 군남홍수조절지 유역에 예측 강우 자료의 적용을 위해, 임진강 유역의 한탄강 유역($2,436.4km^2$)에 대하여 예측 강우자료의 적용성을 평가하였다. 예측 강우 자료는 기상청의 Local Data Assimilation and Prediction System(LDAPS) 자료를 사용하여 선행 시간에 따른 예측 정확도로부터 적용성을 평가하였다.

  • PDF

KOSPI 200예측에 있어서 개입시계열모형과 인공신경망모형의 성과비교

  • 양유모;하은호;오경주
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-182
    • /
    • 2003
  • 많은 경제 시계열 자료 중에서 주가는 국내외 경제상황은 물론 정부정책 등 시장 외적인 영향에 가장 민감하게 반응한다. 하지만, 지금까지의 주가예측에 있어서는 이러한 외부의 영향, 즉 개입(Intervention)이 발생했을 때 주가의 변동에 능동적으로 대처하는 모형이 부재하였다. 실제로 이러한 개입사실을 예측모형에 반영하지 않는다면, 주가예측 있어 그 예측력을 따진다는 것은 무의미하다고 판단된다. 따라서, 개입시점을 발견하고, 이 개입효과를 측정하여 이를 모형에 반영한다면 좋은 예측결과를 얻을 수 있을 것이다. 이 연구에서는 이상점 탐지절차를 이용하여 개입 시점을 발견하고 개입의 효과가 개입시점에만 영향을 주는 모형과 효과가 일정기간 지속되는 모형으로 두 개의 개입시계열모형을 구축하고, 이러한 두 모형의 예측성과와 인공신경망모형을 이용한 예측성과를 비교하였다. 초단기예측(개입 직후 예측)에 있어서 개입의 효과가 지속되는 경우에는 개입시계열이 인공신경망보다 좋을 결과 를 나타내긴 했지만 그 차이는 크지 않았으며, 개입의 효과가 시점에만 영향을 준 경우에는 인공신경망의 결과가 더 우수한 것으로 나타났다. 단기예측(개입 후 20 일후의 예측)에 있어서는 개입 효과의 지속여부에 상관없이 인공신경망이 개입시계열모형보다 우수한 것으로 나타났다.

  • PDF

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • Lee, Ji-Yeong;Kim, Jong-U
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

연안여객수요 예측에 관한 연구 (인천-제주항로를 중심으로)

  • Gwon, Gyu-Ri;Kim, Yul-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.1-3
    • /
    • 2016
  • 연안여객운송은 도서와 육지의 인적 및 물적 교류가 이루어질 수 있도록 하는 유일한 교통수단으로서 그 중요성이 매우 크다. 그럼에도 불구하고 연안여객선에서의 수익성이 낮다는 이유로 그 중요성을 인식하지 못하고 있는 것이 사실이다. 그렇지만 앞으로의 연안여객 수요에 따라 향후 도서민들에게 안정적인 서비스를 제공하기 위해 선박의 추가 투입 및 시설 확충을 위한 의사결정에서 가장 기본이 되는 것이 연안여객의 수요를 예측하는 것이다. 본 논문 에서는 가장 많은 여객 수요를 가지고 있는 제주지역 중에서도 세월호 이후에 끊긴 인천과 제주 항로에 초점을 맞추어 연구를 진행할 것이다. 2007년 1월부터 2013년 12월 까지 84개의 월별 자료를 바탕으로 예측 기법 중에서도 계량적 기법인 시계열 분석을 통해 여객 수요를 예측하고자 한다. 예측 작업에 있어 항상 우수한 성과를 보이는 단 하나의 모형은 존재하지 않기 때문에 예측에 수반된 불확실성을 줄이기 위해 다양한 예측모형을 사용한다. 여러 방법론 중에서 가장 적합도가 높은 모형을 찾아 여객 수요를 예측하고 결과를 도출하였다.

  • PDF

A study on the uncertainty analysis of LENS-GRM using formal and informal likelihood measure (정형·비정형 우도를 이용한 LENS-GRM 불확실성 해석)

  • Lee, Sang Hyup;Choo, Inn Kyo;Yu, Yeong Uk;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.317-317
    • /
    • 2020
  • 수재해는 수자원 인프라의 부족 및 관리 미흡 등 많은 요인들이 있지만 강우의 유무와 크기가 가장 원초적인 요인들 중 하나이다. 정확한 강우량 추정 및 강우발생시간 예측은 수재해로 인한 피해를 예방하고 빠르게 대처할 수 있다. 그러나 강우예측에는 많은 불확실성을 내포하고 있기 때문에 이러한 불확실성을 이해하고 줄여 나가는 것이 필요하다. 최근 컴퓨터의 성능의 발전에 비례해 강우 예측 자료들도 점진적으로 발전을 거듭하고 있다. 이를 강우-유출 모형에 적용시 유출량 예측의 정확성 또한 비례하여 한층 더 발전할 수 있을 것이다. 하지만 신뢰성이 낮은 입력자료를 대상으로 하는 유출해석 모형은 많은 불확실성을 내포할 것이다. 따라서 본 연구에서는 위천 유역에 대해 LENS(Limited area ENsemble prediction System) 강우앙상블 예측자료의 적용성을 검토하고 그리드 기반 강우 유출 모델 GRM(Grid based Rainfall-runoff Model) 에 적용하여 유출예측의 불확실성을 평가하고자 하였다. 또한 강우예측 및 유출예측은 수 많은 매개변수를 포함하며 최종적인 예측은 더 큰 불확실한 범위로 산출될 수 있다. 이에 따라 본 연구에서는 Python3 기반 코딩으로 LENS 자료 구축 및 GRM 모형의 매개변수 보정을 각 2000회 씩에 걸쳐 총 2회 실시하여 수문학적, 지형학적 인자에 따른 불확실성 범위를 보정하고자 하였다. 매개변수의 보정은 비정형우도(Informal likelihood) NSE, 정형우도(Formal likelihood) Lognormal(Log-likelihood function)의 우도에 따른 행위모델을 산정하여 보정하였다. 따라서 본 연구에서는 선행연구들을 참고한 정형, 비정형 우도의 임계치를 이용한 불확실성해석에 적용하였으며 이는 사용자의 행위모델선정 임계치 범위 선정으로 인한 불확실성을 줄여나감에 기여할 수 있을것으로 사료된다.

  • PDF

Scalable Prediction based Concurrency Control for Large Distributed Virtual Environments (대규모 분산 가상 환경을 위한 확장성있는 예측기반 동시성 제어)

  • Yang, Jeong-Hwa;Lee, Dong-Man
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.1
    • /
    • pp.154-163
    • /
    • 2001
  • 인터넷으로 연결된 다수의 참여자를 지원하는 대규모 분산 가상 환경을 위한 확장성 있는 예측 기반 동시성 제어 방법을 제안한다. 예측 기반 동시성 제어 방식은 낙관적(optimistic) 방식과 같이 참여자들에게 실시간 상호 작용 성능을 제공함과 동시에 비관적(pesimistic)방식과 같이 잠금 허가를 받은 사용자에게만 객체 조작을 허용하므로 충돌을 확실히 방지할 수 있다. 본 논문에서는 사용자 수의 증가에 따른 확장성 있는 예측 알고리즘을 위하여 객체 중심 다중 전송그룹을 도입했다. 객체에 관심있는 객체주변의 사용자들만 객체에 할당된 다중 전송 그룹에 소유권 요청 메시지로서의 참여 메시지를 보냄으로써 소유자 후부가 된다. 현재 소유자는 소유자 후보들 중 다음 소유자를 예측한다. 가상 영역내의 모든 사용자 대신 객체의 할당된 다중 전송 그룹에 소유권 요청 메시지로서의 참여 메시를 보냄으로써 소유자 후보가 된다. 현재 소유자는 소유자 후보들 중 다음 소유자를 예측한다. 가상 영역내의 모든 사용자 대신 객체의 다중 전송 그룹에 참여하고 있는 사용자로부터만 소유권 요청 메시지를 받으므로 소유자가 받는 메시지 수는 가상환경의 전체 사용자의 수에 관계없이 상수값을 갖는다. 이는 소유자의 소유권 요청메세지 처리 시간을 줄여 보다 더 정확한 예측을 하고 사용자의 객체 조작 시간 전에 소유권이 전달되도록한다. 제안한 예측 알고리즘은 라이브러리로 구현되어 기존의 가상 환경 시스템에 적용되었고 실험을 통해 제안한 알고리즘이 대규모 가상 환경에서 갖는 효율성과 확장성을 증명한다.

  • PDF