• Title/Summary/Keyword: 섬유면적비

Search Result 87, Processing Time 0.025 seconds

Properties of Advanced Synthetic Fiber Reinforced Concrete for Improvement of Tunnel Shotcrete Performance (터널 숏크리트 성능 향상을 위한 고기능성 합성섬유 보강 콘크리트의 물성 평가)

  • Jeon, Chanki;Jeon, Joongkyu
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • The Application of Steel Fiber Shotcrete in tunneling construction has become part of tunneling practice at least since the 1970s because of its high bending and tensile properties. Over the past 3 decades, researcher from all over the world have been significantly developing the associated technologies for improved performance of SFRS. But still it has some major drawbacks in terms of durability, damage of pumping hose, wastage due to rebound concrete, corrosion and it costs high. To overcome this situation researcher has to look for some alternative material. Therefore, this part study deals with the three types of fiber in order to find good alternative for steel fiber. Polyamide and Polypropylene fiber were used in this study with 0.6, 0.5% mixing ratio. To evaluate its fresh and harden properties air content, slump, compressive, split tensile and bending strength were measured. After comparing the results of all three types of fiber reinforced concrete with its different mixing proportion this study propose that polyamide fiber with addition ratio of 0.6 % for field use.

A Study on the Compression Moldability for Continuous Fiber-Reinforced Polymeric Composites -Part II : Effect of Correlation Coefficient on Compression Moldability- (연속섬유강화 플라스틱 복합재료의 압축성형성에 관한 연구 -제II보 : 압축성형성에 미치는 상관계수의 영향-)

  • 오영준;김이곤
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • During the compression molding process of the continuous fiber-reinforced polymeric composites, two main problems such as fiber-matrix separation and fiber orientation are produced by the difference of flow velocity. Molded parts are lead to be nonhomogeneous and anisotropic. As the mechanical property of the products are dependent on the separation and orientation, it is important to research the fiber mat structure and molding condition. If the fiber mat structure is changed by the increment of needling, the separation decreases and after compression molding the orientation is easily aligned. As it were, the compression moldability is good. But the defects as tears, thin thickness are produced in the products. Therefore, it is important to clarify the moldability in relation to the usage of products and the expenses of produce on the actual process. Therefore we must make the measurement methods that can define the moldability of products. In this research, the effects of the fiber mat structure(NP = 0, 5, 10, 25, 50 punches/$cm^2$) and the mold geometry($r_p$ = 1, 25, 50 mm) on the moldability of products were discussed. We investigated the case of one-dimensional flow in order to obtain the degree of nonhomogeneity and the fiber orientation function. In result, we could gain the correlation coefficient of the continuous fiber-reinforced polymeric composites. Also we experimented on the cup-type compression molding which was appeared the wrinkle on the flange part by the complex stress condition in order to gain the degree of nonhomogeneity and area ratio. In result, the moldability of products was expressed as the correlation coefficient and area ratio.

  • PDF

Removal of Hydrogen Sulfide by Using Sodium Carbonate Impregnated Activated Carbon Fiber (탄산나트륨 첨착섬유활성탄을 이용한 황화수소의 제거)

  • Jung, Hun-Suck;Won, Yong Sun;Siregar, Devi Marietta;Mission, Sophie Kavugho;Lim, Jun-Heok
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.113-117
    • /
    • 2017
  • We prepared sodium carbonate impregnated activated carbon fiber and evaluated its availability for hydrogen sulfide removal by the comparison with the counterpart, sodium carbonate granular impregnated activated carbon. The sodium carbonate impregnated concentration and immersion duration were chosen as two primary parameters. First, the hydrogen sulfide adsorption capacity increased in proportion to the impregnated concentration up to 3 wt%, above which the sodium carbonate impregnated amount rarely showed an increase due to the pore filling effect for both cases. The optimal impregnated concentration was thus set to 3 wt%. Meanwhile, impregnated activated carbon fiber required only half of the immersion duration compared with granular impregnated activated carbon, while showing a 30% increase on the hydrogen sulfide removal capacity. The greater specific area of impregnated activated carbon fiber explained it. In conclusion, we evaluated advantage of preparation time and improved hydrogen sulfide adsorption capacity by impregnate sodium carbonate, which is capable of reacting with hydrogen sulfide chemically, onto the activated carbon fiber with improved specific area.

Preparation of Activated Carbon Fiber-Ceramic Composites and Its Physical Properties (활성탄소섬유-세라믹복합체의 제조 및 물성)

  • 이재춘;박민진;김병균;신경숙;이덕용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.56-62
    • /
    • 1997
  • The PAN (Polyacrylonitrile) based carbon fiber-ceramic composites (CFCC) were prepared from mixtures of short carbon fibers, phenolic resin and ceramic binder. The effects of carbonization temperature of a pre-cursor fiber, the stabilized PAN fiber, on the specific surface area and the bending strength of the activated CFCC were studied in this work. The precursor fiber was carbonized at 80$0^{\circ}C$ and 100$0^{\circ}C$, respectively. The CFCC were activated at 85$0^{\circ}C$ in carbon dioxide for 10~90 minutes. As the burn-off of the activated CFCC made of the precursor fiber carbonized at 80$0^{\circ}C$ was increased from 37% to 76%, the specific surface area in-creased from 493m2/g to 1090m2/g, and the bending strength decreased from 4.5MPa to 1.4MPa. These values were about two times larger than those of the activated CFCC of which precursor fiber was car-bonized at 100$0^{\circ}C$. The effects of carbonization temperature of a precursor fiber on the specific surface area and bending strength of the activated CCFC were explained by bonding force between carbon fiber and car-bonized phenolic resin as well as by relative shirnkage between carbon fiber and ceramic film.

  • PDF

섬유배향각 분포측정에 잇어서 교점계수법의 정밀도에 미치는 섬유종횡비와 면적비의 영향

  • 이상동;김혁;한길영;김이곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.659-663
    • /
    • 1995
  • The fiber oriented conditied inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to measure the fiber orientation angel for the determination of molding conditions, mechanical charactistics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine thr accuracy of intersection counting method. The fiber orientation function measured by intersection countingmethod using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the secant line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.

Microstructural Evaluation of $CO_2$ Activation Process of Isotopic Carbon Fibers by XRD Analysis (XRD를 이용한 등방성 탄소섬유의 이산화탄소 활성화 과정 중 발생하는 구조변화 해석)

  • 노재승
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.227-227
    • /
    • 2003
  • 흑연(graphite), 석탄(coal), 숯(char), soot(검댕이) 등의 탄소로 이루어진 재료들은 비정질부터 완전한 흑연결정까지 다양한 구조를 나타낸다. 이러한 탄소재료의 구조의 출발물질 뿐 아니라 열처리에 따라 강한 영향을 받는다 이러한 구조는 여러 구조인자에 의해 특성화되는데, 구조인자로는 층간거리 d, 결정립 크기 Lc 그리고 결정립 직경 La이다. 이런 구조 인자의 지식은 흑연화, 탄소화, 가스화 등과 같은 다양한 공정을 이해하는데 매우 중요하다. 많은 연구자들은 XRD, Raman 분광, 고분해능 TEM 등과 같은 여러 기술을 통하여 이러한 구조인자에 대한 해석을 시도하였다. 그 중 XRD는 정량적 분석에 있어서 가장 많이 이용되는 기술이다. XRD 회절피크의 위치로부터 층간거리 d를 구할 수 있으며, 결정립 크기 Lc 및 결정립 직경 La는 피크의 line 퍼짐(반가폭)으로 직접 구할 수 있다. 한편 섬유상 흡착제로 이용되는 등방성 탄소섬유는 이산화탄소 또는 수증기에 의해 쉽게 활성화되어 최고 약 2,500 $m^2$/g의 고 비 표면적을 얻을 수 있다. 이렇게 활성화 후 고 비표면적을 나타내는 이유는 좁은 분포를 나타내는 미세기공의 기공구조 때문에 발생하는 것으로 알려져 있다.

  • PDF

Effect of the Combination of Point Loads on the Design Flexural Capacity for Fiber Reinforced Concrete Floor Slab (집중하중 조합에 의한 섬유 보강 콘크리트 바닥슬래브의 설계 휨 내력)

  • Lee, Jong-Han;Cho, Baik-Soon;Kim, Jung-Sik;Cho, Bum-Gu;Ki, Han-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • In this study, the flexural capacity of fiber reinforced concrete floor slabs were evaluated using main design loads, racking and moving loads. Based on design standards and guidelines, the magnitude and loaded area of each load were determined, and its relationship was assessed. For the application of a single load, flexural capacity should be evaluated in the edge of a floor slab. In addition, the slab with thickness and concrete strength, greater than 180mm and 35MPa, respectively, sufficiently satisfied flexural capacity with a minimum of equivalent flexural strength ratio. The combination of racking loads required the largest equivalent flexural strength ratio to satisfy the flexural capacity of the floor slab. The combination of racking and moving loads showed equivalent flexural strength ratio smaller than the case of combination of racking loads, but larger than the application of single racking or moving loads. The results of this study indicated that the flexure of fiber reinforced concrete floor slabs should be designed using the combination of design loads.

Antibacterial Activity of Activated Carbon Fibers Containing Copper Metal (구리 함유 활성 탄소 섬유의 항균 특성)

  • 박수진;김병주;이종문
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.235-241
    • /
    • 2003
  • The polyacrylonitrile (PAN)-based activated carbon fibers (ACFs) containing copper metal were electrolytically prepared in introducing the antibacterial activity into ACFs. The antibacterial activity was investigated by dilution test against Staphylococous aureus (S. aureus; gram positive and virulence) and Klebsiella pnemoniae (K. pnumoniae: gram negative and avirulence). The micropore and textural properties of the ACFs containing copper metal were characterized by BET, t-plot, and H-K methods. The ACFs showed slight decreases in BET's specific surface area, micropore volume, and total pore volume as copper metal increased. However, the antibacterial activities of the ACFs were strongly increased against S. aureus as well as K. pnumoniae, which could be attributed to the presence of copper metal in CU/ACFs systems.

An Experimental Study on the Fracture Energy of Steel Fiber Reinforced Concrete Structures by the Effects of Fiber Contents (강섬유 혼입량에 의한 강섬유보강콘크리트의 파괴에너지에 관한 실험적 연구)

  • 장동일;채원규;정원우;손영환
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.79-88
    • /
    • 1991
  • In this study, fracture tests were carried out in order to investigate the fracture behavior of SFRC(Steel Fiber Peinforced Concrete) with initial cracks. The relationships between loading. strain, mld-span deflections and CMOD(Crack Mouth Opening Displacement) of the beams were observed under the three point loading system. The effect of the fiber content and the initial crack ratio on the concrete fracture behavior were studied and the fracture toughness, the critical energy release ratio and the fracture energy were also calcul ated from the test results. From the test results, it was known that when the fiber contents are between 0.5% and 1.0%, and 1.5% the average fracture energy of SFRC specimens is about 7~10 times. and about 15 times better than that of the plam concrete specimens respectively.ively.

Evaluation on the Mechanical Performance of Concrete Using Entanglement Polyamide Fiber (다발형 폴리아미드섬유 보강 콘크리트의 역학적 성능평가)

  • Jeon, Joong Kyu;Kim, Gyu Yong;Jeon, Chan Ki;Lee, Soo Choul
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • Steel fiber is high stiffness and large weight. So, Pumping hose to rupture of the safety management is difficult. Steel fiber caused by corrosion of the deterioration of durability and high-rebound losses are needed for the improvements. Thus, the revised regulations in 2009 by a steel fiber to reinforce other materials is possible. Variety of fiber reinforcement material for concrete review of applicability is needed. Steel fiber strength than the other fibers is large and by the geometry of the fibers are attached to improve performance. However, compared to steel fiber organic fibers and low modulus of elasticity and tensile strength of fiber and agglomeration occurs in the concrete to be used as reinforcement material is difficult. In this regard, the present study as a single object in the micro-fiber bouquet sharp entanglement through make muck attach surface area, distributed fibers from surfactant of the surface enhanced polyamide fibers, steel fiber and PP fiber reinforced concrete by comparing the scene to provide a basis for the use.