• Title/Summary/Keyword: 섬유노출

Search Result 237, Processing Time 0.026 seconds

Test Results of CFRP cylinder surface temperature on pool flame (Pool 화염에서 CFRP 용기 표면 온도 측정)

  • Lee, Jaehun;Kim, Youngseop;Kim, Hyo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.223.1-223.1
    • /
    • 2010
  • CFRP는 우수한 기계적 강도와 경량 특성으로 인하여 NGV/FCV용 가스를 저장하기 위한 재료로서 널리 이용되고 있다. 탄소 섬유와 에폭시로 이루어진 CFRP는 화염 노출 시 매트릭스의 열적 분해 반응에 의해 급격한 물성 변화를 일으킨다. CFRP 메트릭스가 100kW/$m^2$ 이하의 열플럭스에 노출되는 경우 표면온도 변화에 따른 용기 내부로의 열확산 메카니즘을 규명하기 위해서는 시간에 따른 경계조건의 변화를 명확히 할 필요가 있다. 본 연구에서는 Fuel bed type 가열장치의 열플럭스를 계산하였으며 계산된 열플럭스에 노출되는 CFRP 용기 표면의 온도 변화 측정 실험을 수행하였다. 또한 측정 결과를 보고된 문헌의 결과와 비교하였다.

  • PDF

Assesment of Chemical Resistance of Geomembranes by UV Exposure (지오멤브레인의 옥외노출시험에 의한 화학저항성 평가)

  • Jeon, Han-Yong;Jung, Gu;Choi, Jun-Dong;Park, Jin-Hyuk;Cho, Sung-Ho
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.424-427
    • /
    • 2001
  • 최근에 지오멤브레인, 지오텍스타일 등의 토목합성재료들이 각종 토목공사에 다양한 용도로 사용되고 있고, 그 사용량이 증가함에 따라 이들 재료들의 각종 성능에 대한 평가가 요구되고 있다. 특히 다양한 원료로 제조된 섬유 고분자 재료들을 적용시킨 현장 시스템의 경우 주변환경에 대한 장기 안정성이 요구되며, 주변환경에 대한 안정성은 제조에 이용되는 고분자의 화학조성에 기인한다. (중략)

  • PDF

Workers' Exposure to Airborne Fibers in the Man-made Mineral Fibers Producing and Using Industries (인조광물섬유 제품 제조 및 취급 근로자의 공기중 섬유 노출 평가 및 노동부 노출기준 고찰)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.221-231
    • /
    • 2005
  • In this study, occupational exposures to man-made mineral fibers (MMMFs) including glass wool, rock wool, and continuous glass filament fibers were determined and evaluated on the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV). A total of 171 personal samples collected from 4 glass wool fiber, 2 rock wool fibers, 4 continuous filament glass fiber products manufacturing and a glass fiber and rock wool insulations using industries, and determined respirable fibers concentrations using the National Institute for Occupational Safety and Health (NIOSH) Method 7400, "B counting rule. The fiber concentrations of samples from workers installing thermal insulations in a MMMF using industry showed the highest value: geometric mean (GM) = 0.73 f/cc and maximum = 2.9 f/cc, 70% of them were above the TLV, 1 f/cc. Workers' exposure level (GM= 0.032 f/cc) in the rock wool manufacturing industries was significantly higher than those of glass wool (GM=0.012 f/cc) and continuous filament glass fibers (GM=0.010 f/cc) manufacturing industries (p<0.01). No samples were more than the TLV in the MMMF manufacturing industries. There was a significant difference among companies in airborne fiber levels.

Critical Temperature for Inter-Laminar Shear Strength and Effect of Exposure Time of FRP Rebars (FRP 보강근의 계면전단강도에 대한 임계온도와 노출시간의 영향)

  • Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.45-51
    • /
    • 2013
  • Short beam tests of GFRP and CFRP specimens exposed to high temperature were conducted to measure the inter-laminar shear strength. For the phase I test, the exposure time and temperature were varied to measure reduction in the strength due to the applied conditions. As a results, the critical temperature was found to $270^{\circ}C$ for the both FRP reinforcements. The high temperature, which causes 50% loss of inter-laminar shear strength, is defined as the critical temperature in this study. It should be noted that the critical temperature for the inter-laminar shear strength is mainly dependent on resin properties not on fiber type. In the phase II test, the effect of exposure time was investigated at intervals of 0.25hour for the critical temperature. All test results demonstrate that the exposure time effect is not significant compared to the maximum exposure temperature, but it is not negligible and, moreover, is significant at the critical temperature.

Properties of Fire Resistance in Tunnel Concrete According to the Changes of Heating Curve (온도가열곡선 변화에 따른 콘크리트의 내화특성)

  • Pei, Chang-Chun;Noh, Sang-Kyun;Lee, Chan-Young;Lee, Jong-Suk;Lee, Jang-Hwa;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.705-708
    • /
    • 2008
  • To obtain tunnel concrete safety in case of fire, this study analyzed fire proof characteristics by fire proof method change, and the results are as follows. As a fire proof characteristics by RABT temperature heating curve, plain concrete experienced severe spalling by initial extremely high temperature. In view of fire proof method, in the cases of organic fiber mixing method and board method, spalling was prevented, and in the case of spray method, severe spalling of over 100mm depth occurred along with exposure of structural concrete including spray coat by heat stress, etc while metal lath, the stiffener, falls off. As for fire proof characteristics by RWS temperature heating curve, in case of organic fiber inclusion, concrete surface experienced fusion of within 5mm, while in the case of spray method, spray coat was severely spalled to a depth of over 100mm causing structural body concrete to expose its reinforcement, and also in the case of board method, board was fused by high temperature, causing structural body concrete be directly exposed to high temperature, which triggered overall fall-off phenomenon, so in such extraordinary high temperature heating condition, establishment of special fire proof measures is needed.

  • PDF

Evaluation of Crack Control and Permeability of Hydrophilic PVA fiber Reinforced Cement Composite (친수성 PVA 섬유보강 시멘트 복합체의 균열제어 및 투수성 평가)

  • Won Jing-Pil;Hwang Keum-Sik;Park Chan-Gi;Park Hae-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.391-396
    • /
    • 2004
  • Plastic shrinkage crack occurs at the exposed surfaces of freshly placed concrete due to consolidation of the concrete mass and rapid evaporation of water from the surface. This so-called shrinkage crack is a major concern for concrete, especially for flat structures such as pavements, slabs for industrial factories and retaining walls. This study has been performed to obtain the plastic shrinkage and the permeability of hydrophilic poly vinyl alcohol(PVA) fiber reinforced mortar and concrete. Test results indicated that PVA fiber reinforced cement composite showed an ability to reduce the total crack area and the maximum crack width (as compared to plain and polypropylene fiber reinforced concrete). Also, according to the permeability test result, it was found that PVA fiber reinforced cement composite was more reducing than polypropylene fiber reinforced cement composite.

Performance of Hybrid Fiber Reinforced Concrete at Elevated High Temperature (고온에서 하이브리드 섬유보강 콘크리트의 성능)

  • Won, Jong-Pil;Park, Kyung-Hoon;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.325-333
    • /
    • 2008
  • This study evaluated the mechanical performance, shrinkage crack and fire resistance of hybrid fiber (blended steel and polypropylene fiber with different diameter and length) reinforced concrete at elevated temperature. The compressive, splitting tensile, flexural, plastic shrinkage test were conducted to the evaluate the mechanical properties and the resistance of shrinkage crack. Also, the surface investigation, reduction rate of mass and residual compressive test were performed to evaluate the physical and mechanical properties after 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$ and 1,200$^{\circ}C$ exposure. Test results showed that the hybrid fiber reinforced concrete improved the mechanical performance, shrinkage crack and fire resistance. The reduction of performance with a temperature change were high at the temperature of $600\sim800^{\circ}C$.

An Analysis of Thermal Conductivity of Ceramic Fibrous Insulator by Modeling & Simulation Method I (모델링/시뮬레이션 기법을 이용한 세라믹 섬유 단열재의 열전도도 해석 I)

  • Kang, Hyung;Baek, Yong-Kee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.83-95
    • /
    • 2002
  • Thermal conductivity of ceramic fibrous insulator was analysed and predicted by using the modeling/simulation technique. Ceramic fibrous insulators are widely used as high temperature insulator on account of their lightweight mass and heat resisting properties. Especially it is suitable to protect the high speed aircraft and missiles from severe aero-thermodynamic heating. Thermal conductivity of ceramic fibrous insulator could be determined from the conductive heat transfer and the radiative heat transfer through the insulator. In order to estimate conductive thermal conductivity, homogenization technique was applied, while radiative thermal conductivity was computed by means of random number and radiation probability. Particularly radiation probability can make it possible to estimate the conductivity of fibrous insulator without any experimental constant. The calculated conductivity predicted in the present study have a reasonable accuracy with an average error of 7 percent to experimental data.

Effects of Valproic Acid on the Survival of Human Tennon's Capsule Fibroblasts (발프로익산이 인체 테논낭 섬유아세포의 생존에 미치는 영향)

  • Lee, See Eun;Kim, Jae Woo
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.11
    • /
    • pp.1056-1061
    • /
    • 2018
  • Purpose: To investigate the effects of valproic acid on the survival of cultured human Tenon's capsule fibroblasts (HTFBs). Methods: Primary cultured HTFBs were exposed to 0, 0.25, 0.5, and 1.0 mM valproic acid with or without 0, 1.0, $2.5{\mu}g/mL$ mitomycin C, and incubated for 5 days. Cell survival was assessed using an MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay and the degree of apoptosis was assessed by flow cytometry using annexin-V/propidium iodide double staining. Results: Valproic acid decreased the survival of HTFBs in a dose-dependent manner, and survival was further decreased by adding mitomycin C to valproic acid. Both valproic acid and mitomycin C induced apoptosis of HTFBs. Valproic acid induced less apoptosis than mitomycin C. Conclusions: Valproic acid decreased the cellular survival of HTFBs and induced apoptosis. The antiproliferative effects of valproic acid were further enhanced by the addition of mitomycin C.