• Title/Summary/Keyword: 섬광검출기

Search Result 117, Processing Time 0.028 seconds

Study on Scintillator Polishing Technology for Increasing the Detection Efficiency of Radiation Detectors Using Plastic Scintillators (플라스틱 섬광체를 이용한 방사선 검출기의 검출 효율을 높이기 위한 섬광체 연마 기술 연구)

  • Kim, Jeong-Ho;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.456-462
    • /
    • 2014
  • Scintillators were polished in four steps using polishing paper, to reduce the optical loss occurring at their cross section when radiation detectors are fabricated with plastic scintillators. We studied the correlation between the polishing steps and detection efficiency and assessed the detection characteristics that are dependent in the polishing steps. Our results showed that the detection efficiency increased by approximately 7.75 times for a detector that used a scintillator polished in four steps, compared to a detector that used an depolished scintillator. For detectors fabricated using scintillators polished in different steps, better detection characteristics were obtained in terms of the activity, distance, and location of radiation, compared to detectors fabricated with an depolished scintillator.

Image Acquisition Study of Maximal Scintillation Pixel Array using Light Guide (광가이드를 사용한 최대 섬광 픽셀 배열의 영상 획득 연구)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.249-255
    • /
    • 2022
  • Positron emission tomography for small animals has very high spatial resolution for imaging very small organs. To achieve good spatial resolution, the system must be constructed using very small scintillation pixels. When a detector is constructed using very small scintillation pixels, the size of the applicable array varies depending on the photosensor pixel. In a previous study, a study was conducted to find the maximum scintillation pixel arrangement according to the size of the photosensor. In this study, a detector with a light guide was designed to configure the detector using a more extended array of scintillation pixels, and try to find the maximum arrangement in which all scintillation pixels are imaged. The detector was designed using DETECT2000, which can simulate a detector made of a scintillator. Simulations were performed by configuring the detectors from an 11 × 11 scintillation pixel array to a 16 × 16 array. After obtaining a flood image by collecting the light generated from the scintillation pixel with a photosensor, the largest arrangement without overlap was found through image analysis. As a result, the largest arrangement in which all scintillation pixels could be distinguished without overlapping was a 15 × 15 arrangement.

A Study on Maximizing the Matching Ratio of Scintillation Pixels and Photosensors of PET Detector using a Small Number of Photosensors (적은 수의 광센서를 사용한 PET 검출기의 섬광 픽셀과 광센서 매칭 비율의 최대화 연구)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.749-754
    • /
    • 2021
  • In order to maximize the matching ratio between the scintillation pixel and the photosensor of the PET detector using a small number of photosensor, various arrays of scintillation pixels and four photosensors were used. The array of scintillation pixels consisted of six cases from 6 × 6 to 11 × 11. The distance between the photosensors was applied equally to all scintillation pixels, and the arrangement was expanded by reducing the size of scintillation pixel. DETECT2000 capable of light simulation was used to acquire flood images of the designed PET detectors. At the center of each scintillation pixel array, light generated through the interaction between extinction radiation and scintillation pixels was generated, and the light was detected through for four photosensors, and then a flood image was reconstructed. Through the reconstructed flood image, we found the largest arrangement in which all the scintillation pixels can be distinguished. As a result, it was possible to distinguish all the scintillation pixels in the flood image of 8 × 8 scintillation pixel array, and from the 9 × 9 scintillation pixel flood image, the two edge scintillation pixels overlapped and appeared in the image. At this time, the matching ratio between the scintillation pixel and the photosensor was 16:1. When a PET system is constructed using this detector, the number of photosensors used is reduced and the cost of the oveall system is expected to be reduced through the simplification of the signal processing circuit.

DOI Detector Design using Different Sized Scintillators in Each Layer (각 층의 서로 다른 크기의 섬광체를 사용한 반응 깊이 측정 검출기 설계)

  • Seung-Jae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • In preclinical positron emisson tomography(PET), spatial resolution degradation occurs outside the field of view(FOV). To solve this problem, a depth of interaction(DOI) detector was developed that measures the position where gamma rays and the scintillator interact. There are a method in which a scintillation pixel array is composed of multiple layers, a method in which photosensors are arranged at both ends of a single layer, a method in which a scintillation pixel array is constituted in several layers and a photosensor is arranged in each layer. In this study, a new type of DOI detector was designed by analyzing the characteristics of the previously developed detectors. In the two-layer detector, different sizes of scintillation pixels were used for each layer, and the array size was configured differently. When configured in this form, the positions of the scintillation pixels for each layer are arranged to be shifted from each other, so that they are imaged at different positions in a flood image. DETECT2000 simulation was performed to confirm the possibility of measuring the depth of interaction of the designed detector. A flood image was reconstructed from a light signal acquired by a gamma-ray event generated at the center of each scintillation pixel. As a result, it was confirmed that all scintillation pixels for each layer were separated from the reconstructed flood image and imaged to measure the interaction depth. When this detector is applied to preclinical PET, it is considered that excellent images can be obtained by improving spatial resolution.

Design a Four Layer Depth-Encoding Detector Using Quasi-Block Scintillator for High Resolution and Sensitivity (고분해능 및 고민감도를 위한 준 블록 섬광체를 사용한 네 층의 반응 깊이 측정 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • To achieve high resolution and sensitivity of positron emission tomography (PET) for small animals, the detector is constructed using very thin and long scintillation pixels. Due to the structure of these scintillation pixels, spatial resolution deterioration occurs outside the system's field of view. To solve this problem, we designed a detector that could improve spatial resolution by measuring the interaction depth and improve sensitivity by using a quasi-block scintillator. A quasi-block scintillator size of 12.6 mm x 12.6 mm x 3 mm was arranged in four layers, and optical sensors were placed on all sides to collect light generated by the interaction between gamma rays and the scintillator. DETECT2000 simulation was performed to evaluate the performance of the designed detector. Flood images were acquired by generating gamma-ray events at 1 mm intervals from 1.3 mm to 11.3 mm within the scintillator of each layer. The spatial resolution and peak-to-peak distance for each location were measured in an 11 x 11 array of flood images. The average measured spatial resolution was 0.25 mm, and the average distance between peaks was 1.0 mm. Through this, it was confirmed that all locations were separated from each other. In addition, because the light signals of all layers were measured separately from each other, the layer of the scintillator that interacted with the gamma rays could be completely separated. When the designed detector is used as a detector in a PET system for small animals, it is considered that excellent spatial resolution and sensitivity can be achieved and image quality can be improved.

Design of Small-sized Scintillation Pixel Detector with a Light Guide made of the Same Material as the Scintillation Pixel (섬광 픽셀과 동일한 물질로 광가이드를 적용한 매우 작은 섬광 픽셀 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.523-529
    • /
    • 2023
  • In order to achieve excellent spatial resolution, very small scintillation pixels are used in detectors of positron emission tomography for small animals. However, by using these very small scintillation pixels, scintillation pixels at the edge of the array may overlap in a flood image. To solve this problem, a light guide capable of changing the distribution of light was used. Depending on the material of the light guide, the light spreading tendency is different, and accordingly, the presence or absence of overlapping is different depending on the material of the light guide used. In this study, instead of the conventional glass light guide, a detector using the same material as the scintillation pixel was designed. A scintillator light guide has a higher refractive index than a glass light guide, so the light spread is different. Flood images were acquired to evaluate the degree of separation of the scintillation pixels at the edge of the detector using the two light guides. The degree of separation was evaluated by calculating the distance between the center and the spatial resolution of the image of two scintillation pixels at the edge of the obtained flood image. As a result, when the scintillator light guide was used, better spatial resolution was shown, and the distance between centers of scintillation pixels was wider. When a detector is constructed using a scintillator light guide instead of a conventional glass light guide, it is possible to use a smaller scintillation pixel, thereby securing better spatial resolution.

Development of Sensitivity-Enhanced Detector using Pixelization of Block Scintillator with 3D Laser Engraving (3차원 레이저 각인으로 블록형 섬광체의 픽셀형화를 통한 민감도 향상 검출기 개발)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.313-318
    • /
    • 2019
  • To improve the sensitivity, a detector using a block scintillator was developed. In the pixelated scintillator, a reflector is located between pixels to move the light generated from the scintillator to the photosensor as much as possible, and sensitivity loss occurs in the reflector portion. In order to improve the sensitivity and to have the characteristics of the pixelated scintillator, the block scintillator was processed into a scintillator in pixel form through three-dimensional laser engraving. The energy spectra and energy resolution of each pixel were measured, and sensitivity analysis of block and pixel scintillator was performed through GATE simulation. The measured global energy resolution was 20.7%, and the sensitivity was 18.5% higher than that of the pixel scintillator. When this detector is applied to imaging devices such as gamma camera and positron emission tomography, it will be possible to shorten the imaging time and reduce the dose of patient by using less radiation source.

Study on preparation of a thin film type of ZnS(Ag) scintillator sheet for alpha-ray detection (얇은 필름 형태의 알파선 측정용 ZnS(Ag) 섬광 검출소재 제조 연구)

  • Seo, Bum-Kyoung;Jung, Yeon-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Jung, Chong-Hun;Han, Myeong-Jin
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.389-393
    • /
    • 2006
  • The detector consisted of ZnS(Ag) scintillator and photomultiplier tube (PMT) is widely used as contamination monitor in the nuclear facilities. Such detectors are mainly manufactured by adhering the ZnS(Ag) powder onto the transparent plastic. In this study the preparation condition for ZnS(Ag) scintillator sheet using a simple method was established. The scintillator sheet was composed with a support polymer sheet and ZnS(Ag) scintillator layer. The base sheet was prepared by casting the polymer solution after solving the polymer with solvent and the scintillator layer was manufactured by printing the mixture solution with ZnS(Ag) and paste. It was found that the polysulfone(PSf) as a polymer for the base sheet and a cyano resin as a paste for adhering the ZnS(Ag) scintillator was suitable. Also, the prepared thin scintillator sheet had a sufficient mechanical strength, a optical transparency and an alpha-ray detection performance.

Study on Detection Characteristics of Gamma Radiation Detector using different Geometry of YSO Scintillator (YSO 섬광체의 기하학적 구조에 따른 감마선 검출기의 검출 특성 연구)

  • Kim, Jeong-Ho;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.123-127
    • /
    • 2016
  • In this study, gamma radiation detectors are created by integrating the following combinations of different YSO scintillators and PMT(photomultiplier-tubes) respectively: $3mm{\times}3mm{\times}2mm$, $3mm(Dia){\times}15mm$, $3mm(Dia){\times}20mm$, $10mm(Dia){\times}20mm$. In addition, the scintillator with a 10mm diameter was integrated with a light guide with a 2mm thickness, 10mm entry and 3mm exit, using LightTools. The constructed detector used the standard gamma ray sources $^{137}Cs$(662keV) to analyze the spectral characteristics of gamma rays. The results indicate that at 662keV, the energy resolutions were 14.46%, 21.10%, and 10.71% for the first three combinations respectively. The best results were recorded for the $10mm(Dia){\times}20mm$ detector with light guide, which had an energy resolution of 7.48%.