• Title/Summary/Keyword: 설치간격

Search Result 838, Processing Time 0.026 seconds

A Study on the Verification of an Indoor Test of a Portable Penetration Meter Using the Cone Penetration Test Method (자유낙하 콘관입시험법을 활용한 휴대용 다짐도 측정기의 실내시험을 통한 검증 연구)

  • Park, Geoun Hyun;Yang, An Seung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • Soil compaction is one of the most important activities in the area of civil works, including road construction, airport construction, port construction and backfilling construction of structures. Soil compaction, particularly in road construction, can be categorized into subgrade compaction and roadbed compaction, and is significant work that when done poorly can serve as a factor causing poor construction due to a lack of compaction. Currently, there are many different types of compaction tests, and the plate bearing test and the unit weight of soil test based on the sand cone method are commonly used to measure the degree of compaction, but many other methods are under development as it is difficult to secure economic efficiency. For the purpose of this research, a portable penetration meter called the Free-Fall Penetration Test (FFPT) was developed and manufactured. In this study, a homogeneous sample was obtained from the construction site and soil was classified through a sieve analysis test in order to perform grain size analysis and a specific gravity test for an indoor test. The principle of FFPT is that the penetration needle installed at the tip of an object put into free fall using gravity is used to measure the depth of penetration into the road surface after subgrade or roadbed compaction has been completed; the degree of compaction is obtained through the unit weight of soil test according to the sand cone method and the relationship between the degree of compaction and the depth of the penetration needle is verified. The maximum allowable grain size of soil is 2.36 mm. For $A_1$ compaction, a trend line was developed using the result of the test performed from a drop height of 10 cm, and coefficient of determination of the trend line was $R^2=0.8677$, while for $D_2$ compaction, coefficient of determination of the trend line was $R^2=0.9815$ when testing at a drop height of 20 cm. Free fall test was carried out with the drop height adjusted from 10 cm to 50 cm at increments of 10 cm. This study intends to compare and analyze the correlation between the degree of compaction obtained from the unit weight of soil test based on the sand cone method and the depth of penetration of the penetration needle obtained from the FFPT meter. As such, it is expected that a portable penetration tester will make it easy to test the degree of compaction at many construction sites, and will lead to a reduction in time, equipment, and manpower which are the disadvantages of the current degree of compaction test, ultimately contributing to accurate and simple measurements of the degree of compaction as well as greater economic feasibility.

Sequential Changes in Understory Vegetation Community for 15 Years in the Long-Term Ecological Research Site in Central Temperate Broad-leaved Deciduous Forest of Korea (한반도 온대중부 낙엽활엽수림 장기생태조사지에서 15년간 하층식생 군집의 시계열적 변화)

  • Kim, Min-Su;Yun, Soon-Jin;Park, Chan-Woo;Choi, Won-Il;Chun, Jung-Hwa;Lim, Jong-Hwan;Bae, Kwan-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.3
    • /
    • pp.223-236
    • /
    • 2021
  • This study aims to provide basic data for the systematic conservation and efficient management of forest ecosystems by analyzing changes in understory vegetation of temperate broad-leaved deciduous forests. One-hectare permanent survey plot, consisting of 100 subplots sized 10 × 10 meters, was installed in Gwangneung forest in Pocheon, Gyeonggi-do in 2003. The state of stands and the understory vegetation in the permanent survey plot were examined at a 5-year interval from 2003 to 2018. The vascular plants found in the survey area were 56 families, 128 genera, 176 species, 18 variants, 4 varieties, and 1 subspecies, for a total of 199 taxa. The number of species in both the shrub layer and the herbaceous layer showed a tendency to decrease with time. The MRPP-tests showed a significantly differing species composition of the shrub layer in all years except 2008-2013, whereas significant differences were found in all years concerning the herbaceous layer. As for the average importance value, Euonymus oxyphyllus (18.23%), Acer pseudosieboldianum (16.48%), and Callicarpa japonica (13.85%) were dominant in the shrub layer, while Ainsliaea acerifolia (23.41%), Disporum smilacinum (9.45%), and Oplismenus undulatifolius (5.62%) were dominant in the herbaceous layer. In the shrub layer, the richness of Smilax china, Lonicera subsessilis, and Philadelphus schrenkii was high when the basal area and the stand density of an upper layer were high. By contrast, smaller basal area and stand density were associated with the richness of Acer pseudosieboldianum, Deutzia glabrata, Morus bombycis, and Cornus kousa. Furthermore, it was found out that the impact of the basal area and the stand density on the herbaceous layer decreased over time, while the herb layer's species composition was greatly affected by cover degrees of Euonymus oxyphyllus and Acer pseudosieboldianum in the shrub layer. In conclusion, the number of species in the understory vegetation in Gwangneung forest is continuously decreasing, thus implying that species diversity, basal area, and stand density of an upper layer can influence the species composition in understory vegetation.

Subalpine Vegetation Structure Characteristics and Flora of Mt. Seoraksan National Park (설악산국립공원 아고산대 식생구조 특성 및 식물상)

  • Lee, Sang-Cheol;Kang, Hyun-Mi;Kim, Dong-Hyo;Kim, Young-Sun;Kim, Jeong-Ho;Kim, Ji-Suk;Park, Bum-Jin;Park, Seok-Gon;Eum, Jeong-Hee;Oh, Hyun-Kyung;Lee, Soo-Dong;Lee, Ho-Young;Choi, Yoon-Ho;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.118-138
    • /
    • 2022
  • This study was conducted to identify the vegetation structure of major vegetation by region and elevation in the subalpine zone of Seoraksan National Park and prepare an inventory of flora. We reviewed the results of the previous subalpine studies and, through a preliminary survey, determined that the first appearance point of subalpine vegetation was about 800 m based on the south. Then we conducted a site survey by installing a total of 77 plots, including 12 plots on the northern Baekdamsa-Madeungnyeong trail (BD), 13 plots on the west Hangyeryeong-Kkeutcheong trail (HG), 13 plots on the east side of Sinheungsa-Socheongbong trail (SA), and 39 plots in the southern Osaek-Kkeutcheong, Osaek-Daecheongbong trail (OS), in an interval of 50 m above sea level. The analysis classified 7 communities, including Qercus mongolica-Abies holophylla-Acer pseudosieboldianumcommunity, Q. mongolica-Tilia amurensiscommunity, Q. mongolica-Pinus koraiensiscommunity, Q. mongolica-A. pseudosieboldianumcommunity, Betula ermanii-A. nephrolepiscommunity, P. koraiensis-A. nephrolepiscommunity, and mixed deciduous broad-leaf tree community according to the species composition based on the appearance of the major subalpine plants such as Quercus mongolica, Betula ermanii, and Abies nephrolepis, region, and elevation. 10.68±2.98 species appeared per plot (100 m2), and 110.87±63.89 individuals were identified. The species diversity analysis showed that the subalpine vegetation community of Seoraksan National Park was a mixed forest in which various species appeared as important species. Although there was a difference in the initial elevation for the appearance of major subalpine plants by region, they were distributed intensively in the elevation range of 1,100 to 1,300 m. In the Seoraksan National Park, 322 taxa, 83 families, 193 genera, 196 species, 1 subspecies, 26 varieties, and 4 forms of vascular plants were identified. One taxon of Trientalis europaeavar.arcticawas identified as the protected species. The endemic plants were 19 taxa, and 58 taxa were identified as subalpine plants.

Development of Rope Winding Device for Safety Fishing Operation of Small Trap Fishing Vessel (소형 통발어선의 안전조업을 위한 로프 권양장치 연구)

  • Kim, Dae-Jin;Jang, Duck-Jong;Park, Ju-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The result of a questionnaire survey conducted on fishermen using coastal fish traps shows that fall accidents during trap dropping and pulling constitute the highest proportion of accidents at 42.1 %, whereas slipping accidents on the deck or stricture accidents to the body due to the trap winding device constitute 21.1 % each. In addition, 53.2 % of all surveyed subjects responded that trap pulling is the most dangerous task, followed by fish sorting 33.8 %, and trap dropping 9.1 %. As for the main items requested by fishermen for improving the trap winding device, 36.8 % indicated a method to easily lift the trap from the water to the work deck, and 31.6 % indicated a method to overcome the rope tension and prevent slip when pulling the trap to reduce the accidents. The small trap fishing vessel winding device proposed herein can increase the winding force by strengthening the rope contact area and friction coefficient via an appropriate contact angle between the driving roller of the winding device and the rope. When the contact angles between the driving roller and the rope are 1°, 5°, 9°, 14° and 19°, the rope tension showed a difference according to each contact angle. When the contact angle is 9°, the rope tension is the highest at 392.62 kgf. Based on these experimental results, a prototype winding device is manufactured, and 25 traps are installed on a rope with a total length of 100 m at 4 m intervals in the sea, and then the rope tension is measured during trap pulling. As a result, the rope tension increases rapidly at the initial stage of trap pulling and shows the highest value of 31.89 kgf, which subsequently decreases significantly. Therefore, it is appropriate to design the winding force of a small trap fishing vessel winding device based on the maximum tension value of the rope specified at the beginning of the trap pulling operation.

Method of Reducing Separation Membrane Fouling Using Microbubbles (마이크로버블을 이용한 분리막 파울링 저감방법)

  • Kyung-Hwan Ku;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Due to water shortages caused by water pollution and climate change, total organic carbon (TOC) standards have been implemented for wastewater discharged from public sewage treatment facilities. Furthermore, there is a growing interest and body of research pertaining to the reuse of sewage treatment water as a secure alternative water resource. The membrane bio-reactor (MBR) method is commonly used for advanced wastewater treatment because it can remove organic and inorganic ions and it does not require or emit any chemicals. However, the MBR process uses a separation membrane (MF), which requires frequent film cleaning due to fouling caused by a high concentration of mixed liquor suspended solid (MLSS). In this study, process improvement and microbubble cleaning efficiency were evaluated to improve the differential pressure, water flow, and MF fouling, which are the biggest disadvantages of operating the MF. The existing MBR method was improved by installing a precipitation tank between the air tank and the MBR tank in which raw water was introduced. Microbubbles were injected into a separation membrane tank into which the supernatant water from the precipitation tank was introduced. The microbubble generator was operated with a 15 day on, 15 day off cycle for 5 months to collect discharged water samples (4L) and measure TOC. As the supernatant water from the precipitation tank flowed into the separation membrane tank, about 95% of the supernatant water MLSS was removed so the MF fouling from biological contamination was prevented. Due to the application of microbubbles to supernatant water from the precipitation tank, the differential pressure of the separation membrane tank decreased by 1.6 to 2.3 times and the water flow increased by 1.4 times. Applying microbubbles increased the TOC removal rate by more than 58%. This study showed that separately operating the air tank and the separation membrane tank can reduce fouling, and suggested that applying additional microbubbles could improve the differential pressure, water flow, and fouling to provide a more efficient advanced treatment method.

A Study on Effective Information Delivery of Digital Sign Systems in General Hospitals (종합병원 디지털 정보안내사인의 효과적 정보전달을 위한 연구)

  • Kim, Hwa Sil;Paik, Jin Kyung
    • Korea Science and Art Forum
    • /
    • v.19
    • /
    • pp.281-292
    • /
    • 2015
  • For this study, I conducted a survey investigating current situation, user preference, and field experiment. Hospitals utilizing digital sign systems at least five years were selected, which are connected with visual elements (layout, typo, color) used in waiting areas and elements of the systems (time, video time line). The results obtained from the field survey showed that digital sign systems used the color of typo and background contrasted to one another to increase explicitness and to ensure easy understanding of contents. In addition, the Gothic typo with relatively high legibility was adopted. Time and video timeline, which characterize digital sign systems, showed the advertising screens of the hospitals and the guidance of medical treatment at regular intervals. Moreover, survey results on user satisfaction showed that a majority of respondents indicated they had difficulty in understanding digital information conveyed from digital sign systems due to time setting for rotational speed or the small size of typo although most of the users had previous experience with digital sign systems. The highest proportion of respondents (n=86, 86%) answered that information related to medical departments was what they sought most frequently and that this kind of information should be importantly considered in digital sign systems. For the experiment, new samples with restructured contents of current digital sign systems were created and tested while keeping its design unchanged as well as applying these new samples. Study participants were in their 20s through 50s. When the size of typo was larger under the same conditions for all age groups, study participants found the desired information approximately 3.5 seconds faster. In addition, those in their 20-30s and 40-50s showed the time difference of 4.7 seconds for small typo and 6 seconds for large typo, which suggested that there was a difference by age in the amount of time taken in the experiment to find the desired information from the rotating digital sign system regardless of age and the size of typo.

Effect of Air Circulation Velocity on the Rate of Lumber Drying in a Small Compartment Wood Drying Kiln (소형 목재인공건조실에 있어서 공기순환속도가 목재건조율에 미치는 영향)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.5-7
    • /
    • 1974
  • 1. This study indicates that above the fiber saturation point the drying rate can be increased with increasing the velocity of the air circutation, i.e., the drying rate of sample boards is proportional to the air velocity, but below the fiber saturation point, the effect of the velocity of air circulation is very low as shown in Figs. 1 and 2. 2. Under the controlled temperature and humidity in the kiln, the more the sample boards have moisture, the higher drying rate of it can be obtained. In other words, this means that even though in the case of drying various moisture content of wood, at the final drying stage, approximately the same percentage of moisture content of wood can be secured by employing the higher velocity of air circulation. 3. This study shows that the rate of drying in kiln changes distinctly at the fiber saturation point, i, e., above the fiber saturation point, the drying curve shows concave aginst the X axsis, but below the fiber saturation point, in the range from 30 percent of moisture content to 20 percent of moisture content, the curve shows convex as shown in Fig. 3. As the drying progresses, however, the drying curve shows concave again below 20 percent of moisture content. This means that inflection point of drying curve may be located clearly at the fiber saturation point, i.e., 30 percent of moisture content. As mentioned above, the 30 percent of moisture content of wood at which the inflectional point appears can be recognized as a critical point, i. e., the fiber saturation point at which all free water was removed from wood. The existence of inflectional point indicates that the evaporation of hygroscopic water in a cell wall is more difficult than the evaporation of free water in a cell cavity and the minor space of cell wall. The convex curve in the range of moisture content from 30 percent to 20 percent means that the evaporation of capillary condensed water has a tendency of the same rates of drying approximately, but as approaching to the 20 percent of moisture, the transfusion of moisture from wood becomes difficult because of having less moisture in cell wall. Below 20 percent of moisture content, the drying curve shows concave again, which means that it is difficult to remove the moisture located nearer to the surface of cellulose molecules and the surface bound water. These relations were revealed in Fig. 4. In comparison AC curve which does not have the two inflection points with BD curve which has two inflection points, i.e., Band D, they are mentioned already, by existence of the inflection points, the curve BD shows that the change of drying rate in the interval from 20 percent of moisture content to 30 percent of moisture content is not greater than in the case of the curve AC in the same interval. At the inflection point of 30 percent of moisture content, it can be noticed that the changing of the drying rate is very conspicuous. This phenomenon also can be recognized, as it is noticed by the Fig. 3, the drying rate from green to 30 percent of moisture content is very great. But the inclination of the curve is very slow from 30 percent of moisture content to 20 percent of moisture content, i.e., the inclination of the curve becomes almost horizontal lines. Acknowledgments Gratitude is expressed to Fred E. Dickinson, Professor of 'Wood Technology, School of Natural Resources, University of Michigan, USA for his suggestion to carry out this study.

  • PDF

Residual Effects of Basic Oxygen Furnace Slag as Soil Conditioner in the Rice Paddy Field (논토양 벼 재배에서 제강슬래그의 토양개량제로서의 시용효과)

  • Lim, June-Taeg;Kim, Young-Sin;Park, Jn-Jin;Lee, Choong-Il;Hyun, Kyu-Hawn;Kwon, Byung-Sun;Kim, Hak-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.205-211
    • /
    • 2000
  • This study was conducted to evaluate the residual effects of basic oxygen furnace (BOF) slag applied in rice paddy fields as soil conditioner one year before. The experimental fields of Lim et al. (2000) located in Youjung and Nampyung were used for this purpose. Both variety (Oryza sativa L. cv. Dongjinbyeo) and cultural practices were the same as those in Lim et al. (2000). Soil chemical properties, plant height, number of tillers per plant, yield and yield components were observed. The temporal variation of treatment mean value in soil chemical properties appeared to be similar trends in both Youjung and Nampyung experimental fields. Soil pH and Ca content were still significantly higher than those in control treatment up to July of the second season, but decreased progressively as time passed. However, the effects lasted longer as slag rate became higher. BOF slag seems to have residual effects as a soil conditioner or Ca fertilizer in soil for two years. BOF slag rate of $4Mg\;ha^{-1}$ raised soil pH almost the same as lime rate of $2Mg\;ha^{-1}$. Content of $SiO_2$ in soil applied slag appeared to be higher compared with control. Fe and Mg content in soil with slag treatment was significantly higher than that of control in 1997, but it was almost the same level as that of control in 1998. In YouJung experimental field, rough rice yield of slag teatment became higher as slage rate incresed. Slag rate of $12Mg\;ha^{-1}$ showed the highest rough rice yield of $5,400kg\;ha^{-1}$ among treatment, which was 14% higher than that of control with $4,720kg\;ha^{-1}$. Slag rate of $12Mg\;ha^{-1}$ showed relatively higher plant height and higher number of tillers at the early growth stage compared with other treatments. In NamPyung experimental field, rough rice yield was the highest at the plot of lime rate $2Mg\;ha^{-1}$ and became higher as slag rate increased. There were no significant differences in rough rice yield between lime treatment and slag treatments. Slag rate of $12Mg\;ha^{-1}$ showed the highest rough rice yield of $7,170kg\;ha^{-1}$ among slag treatment, which was 8% significantly higher than that of control with $6,670kg\;ha^{-1}$. Slag rate of $12Mg\;ha^{-1}$ showed relatively slower growth in plant height at the early growth stage, but superior growth at the later growth stage, and significantly higher number of spiklets per panicle and 1000-grain weight than that of control.

  • PDF