• Title/Summary/Keyword: 설계 압축 강성도

Search Result 139, Processing Time 0.026 seconds

The Effect of Variation of Design Parameters on the Flexural Behavior of UHPFRC Beams (UHPFRC 보 휨 거동에 대한 설계변수 변동의 영향)

  • Yang, In-Hwan;Kim, Kyung-Chul;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2018
  • This paper studies the bending behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams focused on the effect of variation in major material design parameters such as tensile strength, elastic modulus of UHPFRC, and rebar ratio. Analytical results show that the variation in the range of ${\pm}20%$ in the tensile strength of UHPFRC causes the significant difference in ${\pm}8{\sim}9%$ of bending strength compared to the reference condition. The variation of elastic modulus in UHPFRC rarely causes the effect on the bending strength of the UHPFRC section, whereas causes the difference in the slopes of moment-curvature curves, indicating different bending stiffness of UHPFRC sections. For the rebar with yield strength of 400MPa, the bending strength of SC120f is increased by 30, 67, and 99% when the rebar ratio is 1.0, 1.5, and 20%, respectively, compared to the rebar ratio of 0.5%. Therefore, it is observed that the variation of rebar ratio significantly affects the difference in bending strength of UHPFRC beams. However, as the compressive strength of UHPFRC becomes greater, the effect of rebar ratio on the increase of bending strength is decreased.

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.

Bending Behavior of Preservative Treated Pitch Pine Stress-Laminated Timber (방부처리 리기다소나무 응력적층재의 휨거동 특성)

  • Kim, Kwang-Mo;Shim, Kug-Bo;Kim, Byoung-Nam
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.306-315
    • /
    • 2010
  • The stress laminated timber, which could be manufactured by small dimension lumber on construction site, has high possibilities for bridges in remote area, such as recreation forest or forest road, because those bridges may be short span and low frequency in use. The stress laminated timber has merits of easiness for preservative treatment and transportation because it is manufactured with small dimension lumber. This study was carried out to analyze performances of stress laminated timber manufactured with preservative treated domestic pitch pine for developing structural design data for stress laminated timber bridges for vehicular traffic. Perpendicular to grain compressive performance by preservative treatment and bending performance by bored holes of pitch pine lumber was analyzed. Then, the effects of bending performance by pre-stress pressure, distance of bolts, number of laminations and planning were analyzed. Conclusively, planning of lumber was not necessary for manufacturing stress laminated timber, and 80% of bending stiffness criteria was maintained as pre-stress pressure was higher than 3.0 kg/$cm^2$. However, further researches are needed to define the effects of bolt distances and number of laminations. The results of this research would be basic data for design stress laminated timber bridges for vehicular traffic in Korea.

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.

Examination of Root Causes of Buckling in the Stern Structure of an Oil Tanker using Numerical Modeling (수치해석 모델링을 이용한 유조선 선미부 구조에 발생한 좌굴 발생 원인 검토)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1259-1266
    • /
    • 2022
  • Recently, due to the specialization of structural design standards and evaluation methods, the classification rules are being integrated. A good example is the common international rules (CSR). However, detailed regulations are presented only for the cargo hold area where the longitudinal load is greatly applied, and no specific evaluation guidelines exist for the bow and stern structures. Structural design of the mentioned area is carried out depending on the design experience of the shipbuilder, and because no clear standard exists even in the classification, determining the root cause is difficult even if a structural damage problem occurs. In this study, an engineering-based solution was presented to identify the root cause of representative cases of buckling damage that occurs mainly in the stern. Buckling may occur at the panel wall owing to hull girder bending moment acting on the stern structure, and the plate thickness must be increased or vertical stiffeners must be added to increase the buckling rigidity. For structural strength verification based on finite element analysis modeling, reasonable solutions for load conditions, boundary conditions, modeling methods, and evaluation criteria were presented. This result is expected to be helpful in examining the structural strength of the stern part of similar carriers in the future.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Han, Jin-Tae;Yoo, Min-Taek;Yang, Eui-Kyu;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.49-58
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models were tested twice: first using Jumoonjin sand, and second using Australian Fine sand. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

Experimental Study on Hysteretic Behavior of 100 MPa Ultra High-Strength Concrete Tied Columns (100 MPa 초고강도 콘크리트 띠철근 기둥의 이력거동에 관한 실험적 연구)

  • Kim, Jong-Keun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.161-168
    • /
    • 2006
  • An experimental investigation was conducted to examine the hysteretic behaviors of ultra-high strength concrete tied columns. The purpose of this study is to investigate the safety of ultra-high strength concrete columns with 100 MPa compressive strength for the requirement of ACI provisions. Eight 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300{\times}300mm$ and the aspect ratio 4. The main variables are axial load ratio, configurations and volumetric ratios of transverse reinforcement. The results show that the deformability of columns are affected by the configurations and volumetric ratios of transverse reinforcement. Especially, it has been found that the behavior of columns are affected by axial load ratio rather than the amounts and the configurations of transverse reinforcement. Consequently, to secure the ductile behavior of 100 MPa ultra-high strength concrete columns, ACI provisions for the requirement of transverse steel may considered axial load level and the details of transverse reinforcement.

Numerical Analysis of CO2 Behavior in the Subsea Pipeline, Topside and Wellbore With Reservoir Pressure Increase over the Injection Period (시간 경과에 따른 저류층 압력 상승이 파이프라인, 탑사이드 및 주입정 내 CO2 거동에 미치는 영향에 대한 수치해석적 연구)

  • Min, Il Hong;Huh, Cheol;Choe, Yun Seon;Kim, Hyeon Uk;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.286-296
    • /
    • 2016
  • Offshore CCS technology is to transport and inject $CO_2$ which is captured from the power plant into the saline aquifer or depleted oil-gas fields. The more accumulated injected $CO_2$, the higher reservoir pressure increases. The increment of reservoir pressure make a dramatic change of the operating conditions of transport and injection systems. Therefore, it is necessary to carefully analyze the effect of operating condition variations over the injection period in early design phase. The objective of this study is to simulate and analyze the $CO_2$ behavior in the transport and injection systems over the injection period. The storage reservoir is assumed to be gas field in the East Sea continental shelf. The whole systems were consisted of subsea pipeline, riser, topside and wellbore. Modeling and numerical analysis were carried out using OLGA 2014.1. During the 10 years injection period, the change of temperature, pressure and phase of $CO_2$ in subsea pipelines, riser, topside and wellbore were carefully analyzed. Finally, some design guidelines about compressor at inlet of subsea pipeline, heat exchanger on topside and wellhead control were proposed.

Evaluation of Seismic Behavior for RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 지진거동 평가)

  • Ko, Hyun;Kim, Hyun-Su;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.13-22
    • /
    • 2010
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middle- rise RC buildings. In the design and assessment of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models because they are assumed to be beneficial to the structural responses. Therefore, their influences on the structural response are ignored. In the case of buildings constructed in the USA in highly seismic regions, infill walls have a lower strength and stiffness than the boundary frames or they are separated from the boundary frames. Thus, the previously mentioned assumptions may be reasonable. However, these systems are not usually employed in most other countries. Therefore, the differences in the seismic behaviors of RC buildings with/without masonry infill walls, which are ignored in structural design, need to be investigated. In this study, structural analyses were performed for a masonry infilled low-rise RC moment-resisting frame. The infill walls were modeled as equivalent diagonal struts. The seismic behaviors of the RC moment-resisting frame with/without masonry infill walls were evaluated. From the analytical results, masonry infill walls can increase the global strength and stiffness of a structure. Consequently, the interstory drift ratio will decrease but seismic forces applied to the structure will increase more than the design seismic load because the natural period of the structure decreases. Partial damage of the infill walls by the floor causes vertical irregularity of the strength and stiffness.

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.