• Title/Summary/Keyword: 설계 모멘트

Search Result 986, Processing Time 0.029 seconds

Modified Moment Gradient Correction Factor of Nonprismatic Beams (변단면보의 개선된 모멘트 구배 수정계수)

  • Park, Jong Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • New design equations for calculating the lateral-torsional buck ling moment resistances of stepped I-section beams with/without continuous lateral top-flange bracing subjected to a point load, a series of point loads, and a uniformly distributed load, are suggested based on the results of elastic finite-element analyses. The new equations presented in this study are compared with the current moment gradient modifiers presented by other researchers and specifications. Although the study paper presents mainly stepped-beam cases subjected to a point load and a uniformly distributed load. The proposed equations include the length-to-height ratio effects for stepped beams with continuous lateral top-flange bracing. The new moment gradient correction factors could be easily used to calculate the lateral-torsional buckling moment resistance of stepped I-beams.

Computational Approach for the Trade-Off Study between the Total Cost and the Member Connections in Steel Frames (강 뼈대구조물의 총 경비와 부재연결과의 상반관계에 관한 연구)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Over the past decade, labor costs have increased relative to the cost of material hardware according to analysts in the construction industry. Therefore, the minimum weight design, which has been widely adopted in the literature for the optimal design of steel structures, is no longer the most economical construction approach. Presently, although connection- related costs is crucial in determining the most cost-effective steel structures, most studies on this subject focused on minimum-weight design or engaged in higher analysis. Therefore, in this study, we proposed a fabrication scheme for the most cost-effective moment-resisting steel frame structures that resist lateral loads without compromising overall stability. The proposed approach considers the cost of steel products, fabrication, and connections within the design process. The optimal design considered construction realities, with the optimal trade-off between the number of moment connections and total cost was achieved by reducing the number of moment connections and rearranging them using the combination of analysis that includes shear, displacement and interaction value based on the LRFD code and optimization scheme based on genetic algorithms. In this study, we have shown the applicability and efficiency in the examples that considered actual loading conditions.

Seismic Evaluation of Beam-Column Joint Specimens of RC Special Moment Frames (철근콘크리트 특수모멘트골조의 보-기둥 접합부 실험체의 내진성능평가)

  • Lee, Ki-Hak;Seok, Keun-Yung;Jung, Chan-Woo;Shin, Young-Shik;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column joints of reinforced concrete special moment frames. All of the test specimens were classified as special moment frame (SMF), based on the design and detailing requirements of the ACI 318-02 provisions. The acceptance criteria, originally defined for steel moment frame connections in the 1997 edition of the AISC Seismic provisions, were used to evaluate the beam-column joints of the reinforced concrete moment frames. A total of 39 test specimens were examined in detail. Most of the joints that satisfy the design requirements for special moment frame structures were found to be ductile up to a plastic rotation of 3% without any major degradation in strength. This is mainly due to the stringent ACI 318-02 requirements for special moment frame joints. The presence of transverse beams increases confinement and shear resistance of joints, which results in better performance than for joints without transverse beams. All of the SMF connections that satisfy the ACI 318-02 limitations on joint shear stress turned out to meet the acceptance criteria.

  • PDF

Experimental Evaluation of Seismic Column Splice with Partial Joint Penetration Welds (부분용입용접 내진기둥 이음부의 강도평가)

  • Lee, Cheol Ho;Kim, Jae Hoon;Kim, Jung Jae;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.817-827
    • /
    • 2008
  • The seismic performance of a column splice fabricated with PJP (partial joint penetration) welds for special moment frames was experimentally evaluated in this study. The steel materials that were used for the specimens included SHN490 and SN490 steel, or the newly developed structural steel for seismic application. Fabricating the column splice with PJP welds is highly attractive from the perspective of reducing the welding cost and the construction time. PJP welds in column splices are viewed apprehensively, however, because several tests have shown that PJP welds in thick members tend to become brittle under tensile loads. The column splices in this testing program were designed for the expected plastic moment of the column that current seismic codes typically require. The design strength of partial-penetration welded joints was determined according to the 2005 AISC-LRFD Specification. Three-point loading was applied monotonically, using a universal testing machine, such thatthe column splice joints were subjected to pure tension. The test results showed that the PJP welded splices, if designed properly, can develop a strength exceeding that of the actual plastic moment of the column. The specimen made of the SM490 rolled section, however, showed a brittle fracture at the splice soon after achieving the actual plastic moment of the column. The tensile coupon test results also showed that the material properties of SM490 steel are more unpredictable. Overall, although the test data are limited, the SHN490 and SN490 steel specimens showed a superior and reliable performance.

Design of Airfoil with Tab-assisted Flap System for Increasement of Controllability and Stability (조종성과 안정성 증가를 위한 플랩-­탭 익형의 설계)

  • No, Hyeon-Seop;Kim, Seong-Hwan;Park, Hyeon-U;Lee, A-Reum;Son, Chan-Gyu;Lee, Gwan-Jung;O, Se-Jong
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.13-16
    • /
    • 2012
  • 본 논문에서는 항공기의 제어 안정성(Control Stability)과 조종성(Controllability), 그리고 기계 하중을 줄여 구조와 공기역학적인 안정성을 향상시키기 위해 고양력장치(High-lift Device)인 플랩에 탭이 추가된 익형을 설계하였다. 이 과정에서 한정된 해석자원 때문에 많은 설계조건을 해석하는데 어려움이 있었다. 이를 해결 하기위해 얇은 익형 해석(Thin Airfoil Theory)을 이용하여 지정된 설계구속조건을 통해 시위선을 지정하고 이를 바탕으로 두께를 부여하여 최종적인 익형을 설계하였다. EDISON CFD 2.0 Solver를 이용해 최종 설계한 익형의 성능을 해석하였다. 이를 바탕으로 플랩만 존재하는 익형에 비해 양력손실률이 15%이하로 감소하고, 힌지 모멘트가 최소인 공기역학적 익형을 산출하였다.

  • PDF

An Analytical Walking Pattern Generation for a Biped Robot (이족 보행 로봇을 위한 해석적 보행 패턴 생성)

  • Hong, Seok-Min;Oh, Yong-Hwan;You, Bum-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1937-1938
    • /
    • 2006
  • 최근 들어 안정적인 보행 패턴 생성을 위해서 많은 방법들이 제안 되고 있다. 대부분의 논문에서 주기적인 보행에 대한 연구는 이루어지고 있으나 첫 보행 구간과 마지막 보행 구간에 대한 분석은 이루어지지 않고 있다. 본 논문은 첫 보행 구간과 마지막 보행 구간에 대한 분석을 통해 기존의 역 진자 모델(Inverted pendulum model)을 기반으로 부드러운 무게 중심의 궤적을 생성하는 해석적 방법을 제안한다. 이를 위해 먼저 정현파 함수를 이용해 영 모멘트 위치(ZMP, Zero Moment Point) 궤적을 설계한다. 영 모멘트 위치 궤적 설계 시 첫 보행 구간과 마지막 보행 구간에 대해 영 모멘트 위치와 무게 중심 간의 비 최소 위상(non-minimum phase) 시스템의 특성을 이용한다. 제안된 방법을 이용하여 주기적인 보행 구간 및 첫 보행 구간과 마지막 보행 구간에서 부드러운 무게 중심 궤적이 생성됨을 시뮬레이션을 통해 구현하여 제안된 방법의 유효성을 보인다.

  • PDF

Comparative Analysis of Deisgn Low Flow by L-moment in the Weibull-3 and Wakeby distributions (Weibull-3 및 Wakeby 분포모형의 L-모멘트법에 의한 설계갈수량 비교분석)

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.45-55
    • /
    • 2000
  • This study was carried out to derive optimal design low flows bythe Weibull-3 and Wakeby distributions for the partial consecutive duration series at seven watersheds along Han. nagdong, Geum Yeongsan and Seomjin river systems. L-coefficient of variation L-skewness and L-kurtosis were calculated by the L-moment ratio respectively. Parameters were estimated by the method of L-Moments with consecutive duration. Design low flows obtained by method of L-Moments using with consecutive duration, Design low flows obtained by method of L-Moments using different methods for plotting positions formulas in the Weibull-3 and Wakeby distributions were compared by the Root Mean Square Errors(RMSE). It has shown that design low flows derived by the method of L-moments using Weivull plotting position formula in Wakeby distribution were much closer to those of the observed data in comparison with those obtained by the methods of L-moments with the different formulas for plotting positions in Weibull-3 distribution from the viewpoint of Root Mean Square Errors.

  • PDF

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load (사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰)

  • Lee, Seung-Bea;Park, Mi-Young;Jang, Su-Youn;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2008
  • The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia of RC beams for the evaluation of flexural deflection, and to develop a modified method on the estimation of the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

The Failure Model of RC Flat Plates Considering Interrelation between Punching Shear and Unbalanced Moment (불균형모멘트와 펀칭전단의 상관관계를 고려한 철근콘크리트 무량판 슬래브의 파괴모델)

  • Choi, Jung-Wook;Song, Jin-Kyu;Song, Ho-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.523-530
    • /
    • 2008
  • In structural design provision, maximum punching shear stress of slabs is prescribed as combined stress in direct shear occurred by gravity load and eccentric shear occurred by unbalanced moment. This means that the effect of unbalanced moment is considered to decide the punching shear stress. However, from the resistance capacity standpoint, the effect of unbalanced moment strength is not considered for deciding punching shear strength. In this paper, a model considering interrelation between unbalanced moment and punching shear was proposed. In the model, the relation between load effect and resistance capacity in unbalanced moment and punching shear was two-dimensionally expressed. Using the interrelation model, a method how unbalanced moment strength should be considered to decide the punching shear strength was proposed. Additionally, effective width enlargement factors for deciding the unbalanced moment strength of flat plates with shear reinforcements were proposed. The interrelation model proposed in this paper is very effective for the prediction of the behavior of slab-column connection because not only punching shear and unbalanced moment strengths but also failure modes of flat plates can be accurately predicted.

Moment Magnifier Method for Long-Term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동을 고려한 모멘트 증대법)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.38-45
    • /
    • 2001
  • Numerical studies were carried out to develop the moment magnifier method for long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. Nonlinear finite element analyses were performed for the numerical studies. Through the numerical studies, the long term behavior of the flat plate subjected to uniform or nonuniform floor load was investigated, and creep effects on the degradation of strength and stiffness of the slabs were examined. As a result, the creep factor was implemented to describe the creep effect on the flat plate. The moment magnifier method using the creep factor was developed for long-term behavior of flat plates. Also, the design examples were shown for the verification of the proposed design method.