• Title/Summary/Keyword: 설계해석 모댈

Search Result 1, Processing Time 0.014 seconds

NUMERICAL INVESTIGATION OF THE FLOW IN A MICRONOZZLE FOR DISPENSING A HIGHLY VISCOUS SEALNT (고점성 밀봉제 인쇄용 마이크로 노즐 설계를 위한 유동해석)

  • Park, G.J.;Kwak, H.S.;Son, B.C.;Kim, K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.54-60
    • /
    • 2007
  • A theoretical and numerical investigation is performed on the flow in a micronozzle for precision-controlled sealant dispenser. The working fluid is a highly viscous epoxy used as sealant in producing LCD panels, which contains a number of tiny solid spacers. Flow analysis is conducted in order to achieve the optimal design of internal geometry of a nozzle. A simplified design analysis methodology is proposed for predicting the flow in the nozzle based on the assumption that the Reynolds number is much less than O(1). The parallel numerical computations are performed by using a CFD package FLUENT. Comparison discloses that the theoretical model gives a good prediction on the distribution of pressure and wall shear stress in the nozzle. However, the theoretical model has a difficulty in predicting the maximum wall shear stress as found in a limited region near edge by numerical computation. The theoretical and numerical simulations provide the good guideline for designing a dispensing micronozzle.