• Title/Summary/Keyword: 설계압력

Search Result 2,266, Processing Time 0.027 seconds

Structure Analysis and Design Optimization of Stiffeners in LNG Tanks (LNG 저장탱크 보강재의 구조해석 및 최적설계)

  • Jin, Cheng-Zhu;Jin, Kyo-Kook;Ha, Sung-Kyu;Seo, Heung-Seok;Yoon, Ihn-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.325-330
    • /
    • 2012
  • This paper describes the structural analysis and optimization of stiffeners used in inner tanks for liquid natural gas (LNG) storage, so that the costs can be minimized while the critical buckling load of the inner tank still exceeds the external pressure exerted by the perlite. The original calculation of perlite pressure applied to the inner tank was based on Zick's code, which led to the overestimation of the external pressure, and consequently, an oversized stiffener. In this study, the effects of the material properties of perlite on the external pressure distribution are scrutinized, and the optimum dimensions of a single stiffener are finally obtained through a series of parametric studies. A 15% decrease in the cost of the stiffener compared with the original design is achieved.

Optimum Design Method for Pressure-reducing System using High-pressure Gas (고압가스감압시스템 최적화 설계기법)

  • Chung, Yong-Gahp;Cho, Nam-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.748-751
    • /
    • 2010
  • To launch rocket on launch pad, propellants and gases are charged into the rocket by remote control system. Using pneumatic pressure-reducing regulators, kinds of gases with various pressure levels are supplied into launch pad. As most of operations for launching the vehicle are remotely controled in the launch control room, pressure pulsations due to rapidly gas supply at the upstream of regulators can make the required operating pressure range missed and cause damage to the regulators. In this paper, the optimum design methods of pressure regulators of pressure-reducing system on launch pad using high-pressure gases were investigated to solve the aforementioned problems and for stable gas supply to launch pad.

  • PDF

Postbuckling Analyses and Derivations of Shell Knockdown Factors for Isogrid-Stiffened Cylinders Under Compressive Force and Internal Pressure (압축력과 내부 압력을 동시에 받는 등방성 격자 원통 구조의 후좌굴 해석 및 좌굴 Knockdown factor의 도출)

  • Kim, Han-Il;Sim, Chang-Hoon;Park, Jae-Sang;Kim, Do-Young;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.653-661
    • /
    • 2020
  • This study derives numerically the shell Knockdown factors for the isogrid-stiffened cylinders of space launch vehicles when the axially compressive force and internal pressure are applied simultaneously. A commercial nonlinear finite element analysis software, ABAQUS, is used for the present work. Nonlinear postbuckling analyses are conducted to calculate the global buckling loads of a cylinder without and with the internal pressure. The shell Knockdown factor is numerically derived using the predicted global buckling loads without and with the geometrically initial imperfection of a cylinder. When the internal pressure of 500 kPa and compressive force are applied to the cylinder, the global buckling load and Knockdown factor increases by 304% and 53%, respectively, as compared to the results without the internal pressure.

A Research on Characteristics of Internal Flow Based on the Gun Barrel Length and Ammunition Pressure. (포신 길이와 탄약 압력에 따른 포신 내부 유동 특성 연구)

  • Jung, Hee-Chur;Kim, Kyoung-Rok;Kang, Yo-Han;Ban, Young-Woo;Jung, Duck-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.513-520
    • /
    • 2018
  • This research concerns the characteristics of tank barrel inner flow according to the barrel length and the pressure of ammunition when fired. By analyzing the flow characteristics of the bore evacuator according to barrel length and ammunition pressure regarding ammunition design, it is possible to prevent the flareback phenomenon that may occur during ammunition operation. Through bore evacuator flow analysis by barrel length and ammunition pressure, we identified key design factors concerning barrel and ammunition compatibility including speed, accuracy, penetration performance and range. Test results found if barrel length is long and ammunition pressure is low, bore evacuator operation time is slow. Therefore, there is a high probability that propellant gas will enter the battle vehicle. Therefore, the correlation analysis method of bore evacuator flow characteristics based on barrel length and ammunition pressure is considered as a primary method to improve operational performance. When designing new ammunition, the correlation analysis method will be used to determine ammunition weight and select the propellant pressure.

Numerical Study on Heat Transfer Characteristic in Combustor Nozzle (추진기관 노즐의 열전달 특성에 관한 수치적 연구)

  • Namkoung, Hyuck-Joon;Han, Poong-Gyoo;Lee, Kyoung-Hoon;Kim, Young-Soo;Jeong, Hae-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.275-281
    • /
    • 2007
  • For a cooling performance research of the combustor operated in a extreme environment of a high temperature and high pressure, we accomplished a cooling performance analysis. Generally a heat transfer characteristic in cooling passage is known well experimentally and theoretically, however heat flux in the combustion chamber isn't. In this study, fluid flow combined with heat transfer analysis is accomplished about a combustor nozzle. We tried to analyze the cooling performance with a heat transfer characteristic of a gas and coolant side in the view point of quantity on the mass flow rate to be supplied to the cooling channel. And finally, evaluation on the thermal safety of nozzle wall material was accomplished.

  • PDF

Control Method for DACS with Variable Burning Area (가변 연소면적 DACS의 압력 제어 기법)

  • Ki, Taeseok;Park, Iksoo;Heo, Jun-Young;Jin, Jungkun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.368-373
    • /
    • 2017
  • Control method for DACS with variable burning area is designed and the performance of the control method is analyzed by doing simulation at various conditions. DACS, which got solid propellant on board, is designed as end-burning type typically. End-burning type DACS has the merit of controlling pressure and thrust, but it discharges the combustion gas which does not using for getting thrust. Therefore, optimal design of propellant grain and burning area changes over time as a result. Variable burning area can be assumed as a disturbance and adaptive control method is useful for pressure control of DACS effected by disturbance.

  • PDF

신형원자로로서의 일체형 가압경수로 설계특성 분석

  • 김용완;이두정;장문희
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.269-279
    • /
    • 1995
  • 가압경수로에서 증기발생기와 같은 주기기를 원자로 내부에 위치하도록 설계한 원자로를 일체형 원자로라고 분류하며, 기존 상용원자로와 같이 모든 주기기가 별도의 압력용기로 설계되어 배관계통에 의해 원자로 외부에 순환회로를 갖는 형태의 원자로를 분리형원자로라고 한다. 최근에 개발되고 있는 한 부류의 신형원자로에서는 원자로 및 계통의 단순성 추구와 계통의 높은 신뢰성으로 안전성 향상을 위해 동력원 사용 등의 능동적 안전개념 보다는 자연현상을 이용하는 피동안전개념이 널리 도입되고 있다. 본보고서에서는 이러한 신형원자로의 노형으로서 일체형원자로의 특성을 전통적인 분리형원자로와 비교, 분석, 평가하였다. 일체형원자로의 가장 큰 장점은 모든 주기기가 단일 압력용기 내에 위치하므로 일차계통이 매우 단순하고 대구경 배관이 없기때문에 대형 냉각재 상실사고가 근본적으로 방지되어 안전계통이 매우 단순하다는 것이다. 이 외에도 일체형원자로는 대단히 많은 일차냉각재 용량, 매우 큰 가압기 용량및 긴 운전원 조치시간등의 설계특성을 보유하고 있어 안전성이 탁월하다는 장점을 지니고 있다. 그러나, 일체형원자로는 모든 주기기가 단일 압력용기 내에 설치되므로 대형 원자로 용기가 요구되며, 원자로 압력용기의 제작성 및 운송 능력이 원자로의 용량을 제한하는 주된 요인이 된다. 일체형원자로의 활용으로 열병합 발전, 지역난방 및 선박용 원자로등의 중소형 원자로에 매우 적합하다고 판단되며, 뛰어난 안전성으로 인하여 사회적 수용성 이 강조되는 상용발전로로서도 적합한 노형이 될 수 있을 것으로 분석되었다.

  • PDF

Study on the Modeling Technique for Prediction about Pressure Drop of an Intravenous Lung Assist Device (혈관 내 폐 보조장치의 압력손실 예측을 위한 모델링기법에 관한 연구)

  • 김기범;권대규;정경락
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.293-299
    • /
    • 2003
  • In this paper, the correlation of Pressure drop about the Newtonian and non-Newtonian fluid was investigated experimentally for vibrating intravascular lung assist device (VIVLAD) and we determined correlation equation to make a prediction about Pressure drop for designing VIVLAD. Design conditions to predict the pressure drop of the modules were studied through an experimental modeling before inserting the artificial lung assist device into as venous. Experiments were performed by distilled water, glycerol/water mixed solution(40% glycerol) of Newtonian fluids. and the bovine blood of non-Newtonian fluids. These fluids were flowed outside and parallel of hollow fiber membranes. Also we measured pressure drop according to the number of the fiber membranes which ware inserted into the inside diameter of shell of 3 cm, and developed the prediction equations by curve fitting method based on correlation between the experimental pressure drop and the frontal area or the packing density of device. The result showed that the Pressure drop and the friction factor of the water/glycerol mixed solution were similar to that of bovine blood. It was showed that the water/glycerol mixed solution (40% glycerol) could be used for measuring the pressure drop and the friction factor instead of the bovine blood. Also, we could estimate the prediction equation of pressure drop and friction factor as the function of Packing density at the number of hollow fibers. We obtained the reliance of the prediction equations because the pressure drop and the friction factor measured from the experiments were similar to that from the prediction equation. These results may be used to further usefulness for the design of VIVLAD.

The Experimental Study of Distribution Characteristics of Lift-force Acting under Pier Deck (잔교상판(棧橋床板)에 작용(作用)하는 양압력(揚壓力) 분포특성(分布特性)에 관한 실험적(實驗的) 연구(硏究))

  • Park, Sang Kil;Park, Hyun Soo;Ahn, Ik Seong;Kim, Woo Saeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.83-90
    • /
    • 2009
  • This study describes the characteristics of distribution of lift-force acting under pier deck through physical experiment. The shape of peak wave pressure was sharp when compressed air existed but was not sharp without that. Values of lift-force was different between edge point and center point in the same block. Distribution of lift-force was expressed differently owing to dimensionless of deck length (l/L), wave steepness (H/L), clearance height per wave height (D/H). The dimensionless factor of D/H affected on the lift-force the clearance between still water surface and decks. This decided the maximum of lift-force. In the case of the same values of D/H, the lift-force are changed by the wave steepness (H/L). Because (D/H) become smaller as the wave steepness (H/L) is increased the height of decks must be decided with the condition which don't have the clearance with $D_{max}$ for the stable design of deck of pier. Effect of reducing lift force was greater in the on-shore than the off-shore according to compressed air existence. This researches points out that design of deck should retain compressed air in order to reduce wave lift force.

Flow Analysis and Pressure Loss Calculation in the Ducts of FGD System (탈황설비 배관내 유동장 해석 및 압력손실 계산)

  • 고성모;이진욱;황금호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.21-25
    • /
    • 1998
  • 탈황설비 배관내 연소가스의 삼차원 유동장에 대한 전산해석을 수행하였다. 복잡한 형상으로 주어진 배관내의 유동장 특성을 관찰하고 압력손실을 계산하였다. 특히 안개깃의 설치유무에 따른 유동장 특성 변화 및 압력손실 감소효과를 집중적으로 고찰하였다. 안내깃의 설치에 따라 유량배분이 적절하게 되고 압력손실이 현저하게 줄어듬을 알 수 있었다. 배관에서의 압력손실을 계산하여 배관설계 및 송풍기 용량 산정의 적절성을 확인할 수 있었다.

  • PDF