• Title/Summary/Keyword: 설계성능

Search Result 16,822, Processing Time 0.043 seconds

Changes in Quality of Lettuce During Storage by Immersion-Type Hydrocooling (침지식 냉수냉각에 의한 상치의 저장중 품질변화)

  • Jeong, Jin-Woong;Kim, Byeong-Sam;Kim, Oni-Woung;Nahmgung, Bae;Park, Kee-Jai
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.537-545
    • /
    • 1995
  • Quality changes of lettuce were studied during storage to investigate the efficiency, cooling properties and the washing and storage effects of immersion-type hydrocooling. As a result of plotting the nondimensionalized lettuce temperature versus cooling time, its cooling rate coefficient was shown to be $-0.365\;min^{-1}{\sim}-0.255\;min^{-1}\;(R^2=0.99{\sim}0.88)$. Rate of weight loss was not significantly (p>0.05) different between lettuces with various treatment conditions during storage at $5^{\circ}C$. However, during storage at $15^{\circ}C$, weight loss of hydrocooled lettuce was lower than that of non-treated lettuce after from 10 to 15 days. Especially, The lettuce packed with PE was more effective than that packed with try in terms of packing condition after hydrocooling. Lettuce pretreated with sterilizing agent, packed with PE vinyl film, removed residual water after hydrocooling had lower decaying rate than any other lettuces. Changes of L and b values in hydrocooled lettuce were slower than those of non-treated one. During changes of chlorophyll content, the initial value, $115.7{\sim}147.3\;mg%$ was decreased to $50{\sim}60%$ after 25 days of storage at $5^{\circ}C$ and within 15 days of storage at $15^{\circ}C$. It could be presumed that the addition of sterilizing agent reduced the initial level of overall total and coliform count and its growth rate during storage. The respiration rate of hydrocooled lettuce at $5^{\circ}C$ was $23.95\;mg{\cdot}CO_2/kg\;hr$, which is 10% of those of non-treated lettuce.

  • PDF

Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network (신경망을 이용한 콘크리트 배합요소 및 압축강도 추정)

  • 김인수;이종헌;양동석;박선규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.457-466
    • /
    • 2002
  • An artificial neural network was applied to predict compressive strength, slump value and mix proportion of a concrete. Standard mixed tables were trained and estimated, and the results were compared with those of the experiments. To consider variabilities of material properties, the standard mixed fables from two companies of Ready Mixed Concrete were used. And they were trained with the neural network. In this paper, standard back propagation network was used. The mix proportion factors such as water cement ratio, sand aggregate ratio, unit water, unit cement, unit weight of sand, unit weight of crushed sand, unit coarse aggregate and air entraining admixture were used. For the arrangement on the approval of prediction of mix proportion factor, the standard compressive strength of $180kgf/cm^2{\sim}300kgf/cm^2$, and target slump value of 8 cm, 15 cm were used. For the arrangement on the approval of prediction of compressive strength and slump value, the standard compressive strength of $210kgf/cm^2{\sim}240kgf/cm^2$, and target slump value of 12 cm and 15 cm wore used because these ranges are most frequently used. In results, in the prediction of mix proportion factor, for all of the water cement ratio, sand aggregate ratio, unit water, unit cement, unit weight of sand, unit weight of crushed sand, unit coarse aggregate, air entraining admixture, the predicted values and the values of standard mixed tables were almost the same within the target error of 0.10 and 0.05, regardless of two companies. And in the prediction of compressive strength and slump value, the predicted values were converged well to the values of standard mixed fables within the target error of 0.10, 0.05, 0.001. Finally artificial neural network is successfully applied to the prediction of concrete mixture and compressive strength.

Behavior of Steel Fiber-Reinforced Concrete Exterior Connections under Cyclic Loads (반복하중을 받는 강섬유 보강 철근콘크리트 외부 접합부의 거동 특성)

  • Kwon, Woo-Hyun;Kim, Woo-Suk;Kang, Thomas H.K.;Hong, Sung-Gul;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • Beam-column gravity or Intermediate Moment frames subjected to unexpected large displacements are vulnerable when no seismic details are provided, which is typical. Conversely, economic efficiency of those frames is decreased if unnecessary special detailing is applied as the beam and column size becomes quite large and steel congestion is caused by joint transverse reinforcement in beam-column connections. Moderate seismic design is used in Korea for beam-column connections of buildings with structural walls, which are to be destroyed when the unexpected large earthquake occurs. Nonetheless, performance of such beamcolumn connections may be substantially improved by the addition of steel fibers. This study was conducted to investigate the effect of steel fibers in reinforced concrete exterior beam-column connections and possibility for the replacement of some joint transverse reinforcement. Ten half-scale beam-column connections with non-seismic details were tested under cyclic loads with two cycles at each drift up to 19 cycles. Main test parameters used were the volume ratio of steel fibers (0%, 1%, 1.5%) and joint transverse reinforcement amount. The test results show that maximum capacity, energy dissipation capacity, shear strength and bond condition are improved with the application of steel fibers to substitute transverse reinforcement of beam-column connections. Furthermore, several shear strength equations for exterior connections were examined, including the proposed equation for steel fiber-reinforced concrete exterior connections with non-seismic details.

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.

A Study on Implementation and Performance of the Power Control High Power Amplifier for Satellite Mobile Communication System (위성통신용 전력제어 고출력증폭기의 구현 및 성능평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.77-88
    • /
    • 2000
  • In this paper, the 3-mode variable gain high power amplifier for a transmitter of INMARSAT-B operating at L-band(1626.5-1646.5 MHz) was developed. This SSPA can amplify 42 dBm in high power mode, 38 dBm in medium power mode and 36 dBm in low power mode for INMARSAT-B. The allowable errol sets +1 dBm as the upper limit and -2 dBm as the lower limit, respectively. To simplify the fabrication process, the whole system is designed by two parts composed of a driving amplifier and a high power amplifier. The HP's MGA-64135 and Motorola's MRF-6401 were used for driving amplifier, and the ERICSSON's PTE-10114 and PTF-10021 for the high power amplifier. The SSPA was fabricated by the RP circuits, the temperature compensation circuits and 3-mode variable gain control circuits and 20 dB parallel coupled-line directional coupler in aluminum housing. In addition, the gain control method was proposed by digital attenuator for 3-mode amplifier. Then il has been experimentally verified that the gain is controlled for single tone signal as well as two tone signals. In this case, the SSPA detects the output power by 20 dB parallel coupled-line directional coupler and phase non-splitter amplifier. The realized SSPA has 41.6 dB, 37.6 dB and 33.2 dB for small signal gain within 20 MHz bandwidth, and the VSWR of input and output port is less than 1.3:1. The minimum value of the 1 dB compression point gets more than 12 dBm for 3-mode variable gain high power amplifier. A typical two tone intermodulation point has 36.5 dBc maximum which is single carrier backed off 3 dB from 1 dB compression point. The maximum output power of 43 dBm was achieved at the 1636.5 MHz. These results reveal a high power of 20 Watt, which was the design target.

  • PDF

Analysis of Environmental Design Data for Growing Pleurotus ervngii (큰 느타리버섯 재배사의 환경설계용 자료 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • This study was carried out to file up using effect and requirement of energy for environmental design data of Pleurotus eryngii growing houses. Heating and cooling Degree-Hour (D-H) were calculated and compared for. some Pleurotus eryngii growing houses of sandwich-panel (permanent) o. arch-roofed(simple) type structures modified and suggested through field survey and analysis. Also thermal resistance (R-value) was calculated for the heat insulating and covering materials of the permanent and simple-type, which were made of polyurethane or polystyrene panel and $7\~8$ layers heat conservation cover wall. The variations of heating and cooling D-H simulated for Jinju area was nearly linearly proportional to the setting inside temperatures. The variations of cooling D-H was much more sensitive than those of heating D-H. Therefore, it was expected that the variations of required energy in accordance with setting temperature or actual temperature maintained inside of the cultivation house could be estimated and also the estimated results of heating and cooling D-H could be effectively used far the verification of environmental simulation as well as for the calculation of required energy amounts. When the cultivation floor areas are all equal, panel type houses to be constructed by various combinations of materials were found to by far more effective than simple type pipe house in the aspect of energy conservation maintenance except some additional cost invested initially. And also the energy effectiveness of multi-span house compared to single span together with the prediction of energy requirement depending on the level insulated for the wall and roof area could be estimated. Additionally, structural as well as environmental optimizations are expected to be possible by calculating periodical and/or seasonal energy requirements for those various combinations of insulation level and different climate conditions, etc.

A Match-Making System Considering Symmetrical Preferences of Matching Partners (상호 대칭적 만족성을 고려한 온라인 데이트시스템)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.177-192
    • /
    • 2012
  • This is a study of match-making systems that considers the mutual satisfaction of matching partners. Recently, recommendation systems have been applied to people recommendation, such as recommending new friends, employees, or dating partners. One of the prominent domain areas is match-making systems that recommend suitable dating partners to customers. A match-making system, however, is different from a product recommender system. First, a match-making system needs to satisfy the recommended partners as well as the customer, whereas a product recommender system only needs to satisfy the customer. Second, match-making systems need to include as many participants in a matching pool as possible for their recommendation results, even with unpopular customers. In other words, recommendations should not be focused only on a limited number of popular people; unpopular people should also be listed on someone else's matching results. In product recommender systems, it is acceptable to recommend the same popular items to many customers, since these items can easily be additionally supplied. However, in match-making systems, there are only a few popular people, and they may become overburdened with too many recommendations. Also, a successful match could cause a customer to drop out of the matching pool. Thus, match-making systems should provide recommendation services equally to all customers without favoring popular customers. The suggested match-making system, called Mutually Beneficial Matching (MBM), considers the reciprocal satisfaction of both the customer and the matched partner and also considers the number of customers who are excluded in the matching. A brief outline of the MBM method is as follows: First, it collects a customer's profile information, his/her preferable dating partner's profile information and the weights that he/she considers important when selecting dating partners. Then, it calculates the preference score of a customer to certain potential dating partners on the basis of the difference between them. The preference score of a certain partner to a customer is also calculated in this way. After that, the mutual preference score is produced by the two preference values calculated in the previous step using the proposed formula in this study. The proposed formula reflects the symmetry of preferences as well as their quantities. Finally, the MBM method recommends the top N partners having high mutual preference scores to a customer. The prototype of the suggested MBM system is implemented by JAVA and applied to an artificial dataset that is based on real survey results from major match-making companies in Korea. The results of the MBM method are compared with those of the other two conventional methods: Preference-Based Matching (PBM), which only considers a customer's preferences, and Arithmetic Mean-Based Matching (AMM), which considers the preferences of both the customer and the partner (although it does not reflect their symmetry in the matching results). We perform the comparisons in terms of criteria such as average preference of the matching partners, average symmetry, and the number of people who are excluded from the matching results by changing the number of recommendations to 5, 10, 15, 20, and 25. The results show that in many cases, the suggested MBM method produces average preferences and symmetries that are significantly higher than those of the PBM and AMM methods. Moreover, in every case, MBM produces a smaller pool of excluded people than those of the PBM method.

Development of a High Heat Load Test Facility KoHLT-1 for a Testing of Nuclear Fusion Reactor Components (핵융합로부품 시험을 위한 고열부하 시험시설 KoHLT-1 구축)

  • Bae, Young-Dug;Kim, Suk-Kwon;Lee, Dong-Won;Shin, Hee-Yun;Hong, Bong-Guen
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.318-330
    • /
    • 2009
  • A high heat flux test facility using a graphite heating panel was constructed and is presently in operation at Korea Atomic Energy Research Institute, which is called KoHLT-1. Its major purpose is to carry out a thermal cycle test to verify the integrity of a HIP (hot isostatic pressing) bonded Be mockups which were fabricated for developing HIP joining technology to bond different metals, i.e., Be-to-CuCrZr and CuCrZr-to-SS316L, for the ITER (International Thermonuclear Experimental Reactor) first wall. The KoHLT-1 consists of a graphite heating panel, a box-type test chamber with water-cooling jackets, an electrical DC power supply, a water-cooling system, an evacuation system, an He gas system, and some diagnostics, which are equipped in an authorized laboratory with a special ventilation system for the Be treatment. The graphite heater is placed between two mockups, and the gap distance between the heater and the mockup is adjusted to $2{\sim}3\;mm$. We designed and fabricated several graphite heating panels to have various heating areas depending on the tested mockups, and to have the electrical resistances of $0.2{\sim}0.5$ ohms during high temperature operation. The heater is connected to an electrical DC power supply of 100 V/400 A. The heat flux is easily controlled by the pre-programmed control system which consists of a personal computer and a multi function module. The heat fluxes on the two mockups are deduced from the flow rate and the coolant inlet/out temperatures by a calorimetric method. We have carried out the thermal cycle tests of various Be mockups, and the reliability of the KoHLT-1 for long time operation at a high heat flux was verified, and its broad applicability is promising.

Effect of the Particle Size and Unburned Carbon Content on the Separation Efficiency of Fly ash in the Countercurrent Column Flotation (向流컬럼浮選機에서 石炭灰의 크기 및 未燃炭素 含量이 分離特性에 미치는 영향)

  • 이정은;이재근
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.36-44
    • /
    • 2000
  • Fly ash was composed of the unburned carbon and mineral particles. The former was able to attach on the bubbles, while the latter was not. Therefore, it was possible to separate the unburned carbon and the mineral from fly ash using the froth flotation process. This study was carried out to evaluate the separation efficiency as a function of the ny ash particle properties in the column flotation. Separation efficiency was analyzed for various size fraction of -38 fm,38~125 fm and 1125 W, and for various fly ash samples containing 7, 11, and 20 wt% unburned carbon. For the size fractions of -38 fm containing 7 wt% unburned carbon, separation efficiency was 86ft, whereas separation efficiency was found to be 74% for the size fraction of +125$\mu\textrm{m}$ containing 20 wt% unburned carbon. The results indicated that separation efficiency increased with the decrease in the particle size and the unburned carbon content of the fly ash.

  • PDF