• Title/Summary/Keyword: 선 추적

Search Result 868, Processing Time 0.031 seconds

ACMs-based Human Shape Extraction and Tracking System for Human Identification (개인 인증을 위한 활성 윤곽선 모델 기반의 사람 외형 추출 및 추적 시스템)

  • Park, Se-Hyun;Kwon, Kyung-Su;Kim, Eun-Yi;Kim, Hang-Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • Research on human identification in ubiquitous environment has recently attracted a lot of attention. As one of those research, gait recognition is an efficient method of human identification using physical features of a walking person at a distance. In this paper, we present a human shape extraction and tracking for gait recognition using geodesic active contour models(GACMs) combined with mean shift algorithm The active contour models (ACMs) are very effective to deal with the non-rigid object because of its elastic property. However, they have the limitation that their performance is mainly dependent on the initial curve. To overcome this problem, we combine the mean shift algorithm with the traditional GACMs. The main idea is very simple. Before evolving using level set method, the initial curve in each frame is re-localized near the human region and is resized enough to include the targe region. This mechanism allows for reducing the number of iterations and for handling the large object motion. The proposed system is composed of human region detection and human shape tracking modules. In the human region detection module, the silhouette of a walking person is extracted by background subtraction and morphologic operation. Then human shape are correctly obtained by the GACMs with mean shift algorithm. In experimental results, the proposed method show that it is extracted and tracked efficiently accurate shape for gait recognition.

  • PDF

The Object tracking method based on the block using a difference image (차영상을 이용한 블록기반 객체 추적 방법)

  • Kim, Dong-Woo;Song, Young-Jun;Kim, Ae-Kyeong;Ahn, Jae-Hyeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.605-607
    • /
    • 2009
  • 본 논문은 감시 시스템의 객체 추적 시, 정확한 객체 추출을 위해 블록 기반으로 객체를 추적하는 방법을 제안한다. 객체 움직임 추적은 주어진 환경에 따라 변수가 많고, 변수를 대처하는 알고리즘을 많이 추가 할 경우 실시간 추적에 어려움이 발생한다. 특히 배경이 조명이나 바람 등의 환경적 요인에 의해 변화되는 문제는 객체를 추적하는데 가장 큰 문제점이다. 특히 사람이나 멧돼지의 경우 움직임에 의한 객체 구성 요소의 흔들림에 의해 고정 블록의 연산에 의해 움직임 객체를 추적할 때 정확한 객체의 윤곽선을 검출하기 힘들다. 따라서 연속되는 프레임에서 전체 화면의 차영상을 이용하여 움직임 관심 영역을 설정하고, 관심 영역에 해당하는 블록들을 분석하였다. 이를 기반으로 움직임 객체의 최외곽 사각형의 객체 영역을 추출하여 기존 고정 블록 방법에 의한 객체 추적보다 좀 더 정확하게 객체를 추출하고 추적할 수 있다.

  • PDF

Real-Time Object Tracking Algorithm based on Minimal Contour in Surveillance Networks (서베일런스 네트워크에서 최소 윤곽을 기초로 하는 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.337-343
    • /
    • 2014
  • This paper proposes a minimal contour tracking algorithm that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. This algorithm perform detection for object tracking and when it transmit image data to server from camera, it minimized communication load by reducing quantity of transmission data. This algorithm use minimal tracking area based on the kinematics of the object. The modeling of object's kinematics allows for pruning out part of the tracking area that cannot be mechanically visited by the mobile object within scheduled time. In applications to detect an object in real time,when transmitting a large amount of image data it is possible to reduce the transmission load.

Object boundary tracking using modified boundary tracking algorithm (개선된 체인코드틀 이용한 물체 윤곽선 추척)

  • Kim, Yuk;Kwon, Woo-Hyen;Koo, Bon-Ho;Youn, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.411-412
    • /
    • 2007
  • 본 논문에서는 경계선 추적에 널리 사용되고 있는 체인코드를 개선하여 윤곽선 추적 시 시간과 메모리 효율을 개선하였다. 일반적으로 정형화된 물체는 윤곽선의 동선이 대부분 이전 검색동선과 같은 방향으로 움직인다. 기존의 8방향 체인코드에는 같은 동선에 있는 경계선이라도 픽셀하나당 한번 씩 검사를 한다. 개선된 체인코드는 확인된 경계영역에서 상하좌우, 대각선 방향으로 한 픽셀씩 더 확인하여 기존 체인코드보다 시간과 메모리 효율을 개선할 수 있다.

  • PDF

4방향 윤곽선을 이용한 동영상에서 이동 물체 인식

  • Kim, Seong-Hun;Han, Jun-Hui
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.279-283
    • /
    • 2007
  • 움직이는 물체를 분류하는 것은 영상 감시 시스템에서 가장 중요한 분야 중의 하나이다. 사람과 자동차는 영상 감사 시스템에서 인식해야 하는 가장 중요한 물체의 종류이기 때문에 본 연구에서는 인식하는 물체의 종류를 이것들로 제한한다. 사용되는 특성으로는 물체의 움직임에서 추출되는 특성과 형태에서 추출되는 특성이 있다. 이 두 가지 특성들은 정지된 하나의 카메라로부터 입력된 영상에 나타나는 물체를 분류하기 위하여 사용된다. 움직임으로부터 추출되는 특성은 연결 성분 분석을 이용한 물체 추적과 밀접한 관련이 있다. 그리고 형태 기반 특성에 관한 학습은 종횡비(aspect ratio)와 4개의 윤곽선을 가지고 수행된다. 움직임 기반 특성과 종횡비는 물체를 사람과 자동차로 구분하는데 이용되고 각각의 종류를 더욱 세분화하기 위하여 4개의 윤곽선이 사용된다.

  • PDF

Boundary Line Extract for Moving Object Tracking (이동 물체 추적을 위한 경계선 추출)

  • Kim, Tea-Sik;Lee, Ju-Shin
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.28-34
    • /
    • 1998
  • In this paper, I'd like to make a suggestion for boundary line detect algorithm which is used 3-D image processing system in order to track moving object. Through this study, more than anything else, difference image method was adopted to detect moving object in input image. To detect moving object, I made use of detect windows constructed by 4's predictive areas and object area for the purpose of reducing processing time and its size was determined by the size of moving object and prediction parameter directed center position. And also, tracking camera was movable toward the direction of X, Y by DC motor. As a conclusion of the study proposed algorithm, I found out the following results that tracking error was less than 6% of total moving object size and maximum tracking time 2 seconds by toy-car simulation.

  • PDF

A Study on Auto Inspection System of Cross Coil Movement Using Machine Vision (머신비젼을 이용한 Cross Coil Movement 자동검사 시스템에 관한 연구)

  • Lee, Chul-Hun;Seol, Sung-Wook;Joo, Jae-Heum;Lee, Sang-Chan;Nam, Ki-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.79-88
    • /
    • 1999
  • In this paper we address the tracking method which tracks only target object in image sequence including moving object. We use a contour tracking algorithm based on intensity and motion boundaries. The motion of the moving object contour in the image is assumed to be well describable by an affine motion model with a translation, a change in scale and a rotation. The moving object contour is represented by B-spline, the position and motion of which is estimated along the image sequence. we use pattern recognition to identify target object. In order to use linear Kalman Filters we decompose the estimation process into two filters. One is estimating the affine motion parameters and the other the shape of moving object contour. In some experiments with dial plate we show that this method enables us to obtain the robust motion estimates and tracking trajectories even in case of including obstructive object.

  • PDF

Object Contour Tracking Using an Improved Snake Algorithm (개선된 스네이크 알고리즘을 이용한 객체 윤곽 추적)

  • Kim, Jin-Yul;Jeong, Jae-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.105-114
    • /
    • 2011
  • The snake algorithm is widely adopted to track objects by extracting the active contour of the object from background. However, it fails to track the target converging to the background if there exists background whose gradient is greater than that of the pixels on the contour. Also, the contour may shrink when the target moves fast and the snake algorithm misses the boundary of the object in its searching window. To alleviate these problems, we propose an improved algorithm that can track object contour more robustly. Firstly, we propose two external energy functions, the edge energy and the contrast energy. One is designed to give more weight to the gradient on the boundary and the other to reflect the contrast difference between the object and background. Secondly, by computing the motion vector of the contour from the difference of the two consecutive frames, we can move the snake pointers of the previous frame near the region where the object boundary is probable at the current frame. Computer experiments show that the proposed method is more robust to the complicated background than the previously known methods and can track the object with fast movement.

Active Fusion Model with Robustness against Partial Occlusions (부분적 폐색에 강건한 활동적 퓨전 모델)

  • Lee Joong-Jae;Lee Geun-Soo;Kim Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.35-46
    • /
    • 2006
  • The dynamic change of background and moving objects is an important factor which causes the problem of occlusion in tracking moving objects. The tracking accuracy is also remarkably decreased in the presence of occlusion. We therefore propose an active fusion model which is robust against partial occlusions that are occurred by background and other objects. The active fusion model is consisted of contour-based md region-based snake. The former is a conventional snake model using contour features of a moving object and the latter is a regional snake model which considers region features inside its boundary. First, this model classifies total occlusion into contour and region occlusion. And then it adjusts the confidence of each model based on calculating the location and amount of occlusion, so it can overcome the problem of occlusion. Experimental results show that the proposed method can successfully track a moving object but the previous methods fail to track it under partial occlusion.