• Title/Summary/Keyword: 선회특성

Search Result 449, Processing Time 0.029 seconds

Effects of Swirl on Flame Development and Late Combustion Characteristic in a High Speed Single-Shot Visualized SI Engine (고속 단발 가시화 스파크 점화 엔진에서의 연소 특성에 대한 선회효과 연구)

  • Kim, S.S.;Kim, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.54-64
    • /
    • 1995
  • The effects of swirl on early flame development and late combustion characteristic were investigated using a high speed single-shot visualized 51 engine. LDV measurements were performed to get better understanding of the flow field in this combustion chamber. Spark plugs were located at half radius (R/2) and central location of bore. High speed schlieren photographs at 20,000 frames/sec were taken to visualize the detailed formation and development of the flame kernel with cylinder pressure measurements. This study showed that high swirl gave favorable effects on combustion-related performances in terms of the maximum cylinder pressure and flame growth rate regardless of spark position. However, at R/2 ignition the low swirl shown desirable effects at low engine speed gave worse performances as engine speed increased than without swirl. There were distinct signs of slow-down in flame growth during the period when the flame front expanded from 2.5mm in radius until it reached 5.0mm apparently due to the presence of ground electrode. There seemed to be heat transfer effect on the flame expansion speed which was evidenced in high swirl case by the slowdown of the late flame front presumably caused by relatively large heat loss from burned gas to wall compared with low- or no-swirl cases.

  • PDF

A Study on Swirl Flow and Combustion Characteristics of Air Staged Low NOx Burner (다단 공기 공급 저 NOx 버너의 선회유동 및 연소특성에 관한 실험적 연구 - 다단공기공급에 의한 연소특성(I) -)

  • Shin, Myung-Chul;Ahn, Je-Hyun;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, the detailed combustion characteristics are studied. For this triple air staged combustor, the angular momentum weighted by it#s swirl number and air distribution ratio was observed to be the critical criteria of NOx emission. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must be transferred from the flame via radiation to the chamber heat transfer surfaces, such that the peak flame temperatures are suppressed when the second air is introduced. It is experimentally found out that the total NOx emission level in this type of burner is below 50ppm(3% Ref. O2) at optimum operating conditions.

  • PDF

Comparison of Overall Characteristics between an Air-Assisited Fuel Injector and a High-Pressure Swirl Injector-Part I: Flow rate and Macroscopic Spray Characteristics (공기보조 분사기와 고압 선회식 분사기의 특성 비교- Part 1:유량 및 거시적 분무특성)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.20-27
    • /
    • 2000
  • Characteristics of two favorite injection tools for gasoline direct injection application were compared. An air-assisted fuel injector (AAFI) and a high-pressure swirl injector (HPSI) were designed and fabricated for prototype development, and the characterization strategies and processes for both injection tool have been arranged in parallel. Characterization works were carried out mainly through measurements, and in some cases, computational fluid dynamic analysis was utilized. In this paper, overall characteristics defined as flow rate, spray pattern, penetration, internal spray structure and drop size distribution, was discussed. The AAFI was found to be advantageous in flexibility of fuel flow rate, and the HPSI in stability and precision. Spray shape factor was introduced to describe the development of intermittent sprays from both injectors. Axial penetration appeared to be almost linear in the case of the AAFI while its speed continuously decreased with time in the HPSI.

  • PDF

Comparison of Overall Characteristics between an Air-Assisted Fuel Injector and a High-Pressure Swirl Injector- Part II: Microscopic Spray Characteristics (공기보조 분사기와 고압 선회식 분사기의 특성 비교 - Part II: 미시적 분무특성)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.28-35
    • /
    • 2000
  • As a second part of the comparison study, microscopic features of an air-assisted fuel injector(AAFI) and a high-pressure swirl injector (HPSI) were characterized. They consist of the internal spray structure in terms of fuel mass and drop diameter, the overall atomization performance with respect to operating parameters and the drop size distribution. Large droplets are concentrated in around the head part of a spray field of the HPSI, while in the case of the AAFI, they were distributed in the tail part. Although the AAFI showed the better atomization performance, the feasible ranges of operating parameters such as injection and ambient pressure were found to be wider in the HPSI. Drop size distribution of the AAFI sprays was more dispersed than that of the HPSI. Drop size distribution of the AAFI sprays was more dispersed than that of the HPSI. However, at the well-atomized condition, it appeared to be very uniform.

  • PDF

Study on Operating Characteristics for NOx Reduction in Ultra Low NOx Burner Combustion Using 80 kW Furnace (80 kW 초 저 NOx 단일 버너 연소로에서 NOx 감소를 위한 운전특성 연구)

  • Chae, Taeyoung
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • This experimental study investigates the design parameters to achieve ultra low NOx combustion of coal using a 80 kW capacity single-burner furnace. The influence of key design parameters such as SN, overall and burner-zone equivalence ratios, primary/secondary air ratio, overfire air (OFA) ratio were tested for a total of 81 cases. The results showed that weak swirl intensity of the burner leads to higher NOx emission whereas strong swirl intensity accompanies increased CO concentration desipte lower NOx emission. Therefore, finding an appropirate swirl intensity is essential for the burner design. Larger flow rate of secondary air increased NOx emission, whereas smaller flow rate stretches the flame and increased CO emission. The lowest NOx emission of 82 ppm (6% O2) was achieved at the optimal condition of the present burner deisgn. It is expected to furrther lower the NOx emission by introducing splitting the burner secondary air into three or four streams.

Study on the Aerodynamic Characteristics of an Wing Depending on the Propeller Mounting Position (프로펠러 장착 위치에 따른 날개의 공력 특성 변화 연구)

  • Inseo, Choi;Cheolheui, Han
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • Recently, electric propulsion aircraft with various propeller mounting positions have been under construction. The position of the propeller relative to the wing can significantly affect the aerodynamic performance of the aircraft. Placing the propeller in front of the wing produces a complex swirl flow behind or around the propeller. The up/downwash induced by the swirl flow can alter the wing's local effective angle of attack, causing a change in the aerodynamic load distribution across the wing's spanwise direction. This study investigated the influence of the distance between a propeller and a wing on the aerodynamic loads on the wing. The swirl flow generated by the propeller was modelled using an actuator disk theory, and the wing's aerodynamics were analysed with the VSPAERO tool. Results of the study were compared to wind tunnel test data and established that both axial and spanwise distance between the propeller and the wing positively affect the wing's lift-to-drag ratio. Specifically, it was observed that the lift-to-drag ratio increases when the propeller is positioned higher than the wing.

2차원 및 3차원 액체 램제트 엔진의 내부 유동 해석

  • 손창현;오대환;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.11-11
    • /
    • 1998
  • 최적의 액체 램제트 연소기 설계를 위하여 흡입공기와 분무, 혼합 그리고 이에 따른 연소의 일련의 과정이 일어나는 램제트 연소기의 유동해석을 2차원 및 3차원으로 수행하였다. 격자구성은 연소기에 공기를 공급하고 연료를 분무하는 공기 유입관 영역과 연소실 및 노즐 영역, 그리고 출구 대기 영역으로 나누어 독자적으로 격자를 생성시켰다. 연소실 내의 유동 특성에 있어서 2차원과 3차원의 유동해석 결과는 선회영역 유동특성이 크게 차이가 남을 알 수 있었다. 따라서 실제 액체 램제트 연소기의 설계를 위해서는 3차원 유동해석과 실험이 반드시 필요하다.

  • PDF

Performance of Pressure Swirl Injector using Screw Type Swirler for Combustor in a Supersonic Engine (Part I. Performance of Control Group Injector) (초음속 엔진용 연소기를 위한 스크류형 선회기를 장착한 압력선회형 인젝터의 성능(Part I. 기준 인젝터의 성능))

  • Hwang, Yong-Seok;Lee, Jang-Woo;Lee, Sang-Youn;Jeong, Hae-Seung;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.258-263
    • /
    • 2008
  • Performance of injector equiped with screw type swirler which is suitable for supersonic cruise engine combustor was investigated using theoretical, numerical, and experimental methods. Based on discharge coefficient and spray angle which represent the performance of injectors, the geometrical parameters which affect these performance parameters were defined, control group injectors were designed, and variation of performance parameters according to the geometrical parameters were examined. Within the defined range, measured value of performance of injectors was smaller than result of theoretical prediction, and prediction result from numerical simulation using VOF method agreed with the result of experiments very well. The viscous barrier was not observed, and minimum discharge coefficient and maximum spray angle, 0.05 and 104 respectively, was obtained for this type of injector.