• Title/Summary/Keyword: 선형 Kelvin-Helmholtz 불안정 이론

Search Result 2, Processing Time 0.02 seconds

A Study on the Prediction of the Drop Size Distribution of Pressure-Swirl Atomizer (압력식 스월 노즐의 액적 크기분포 예측에 관한 연구)

  • Cho, D.J.;Yoon, S.J.;Kim, D.W.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 1996
  • A theoretical and experimental study was carried out on the prediction of drop size distribution of the pressure swirl atomizer. Drop size distribution was obtained by using maximum entropy formal ism. Several constraints in the form of the definition of mean diameter were used in this formulation in order to avoid the difficulties of the estimating source terms. In this study $D_{10}$ was only introduced into the formulation as a constraint. A drop size obtained by using linear Kelvin-Helmholtz instability theory was considered as an unknown characteristic length scale. As a result, the calculated drop size was agreed well with measured mean diameter, particularly with $D_{32}$. The predicted drop size distribution was agreed welt with experimental data measured wi th Malvern 2600.

  • PDF

A numerical analysis and experimental study on the prediction of spray characteristics (분무특성 예측을 위한 이론적 접근과 실험적 연구)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • A theoretical and experimental study was carried out to predict the drop size distribution of the pressure swirl atomizer. Various analytical methods using the Kelvin-Helmholtz instability theory were tried to examine the wave growth on cylindrical liquid sheets. Cylinderical liquid sheets were extended to the case with the conical sheets. Perturbations due to tangential motion as well as longitudinal one were taken into account. And it was assumed that the breakup occurs when amplitude ratio exceeds exp(12), drop sizes were predicted only by theoretical approach. Drop size distribution was obtained by using maximum entropy formalism. Seven constraints in the form of the definition of mean diameter were used in this formulation in order to avoid the difficulties of estimating source terms. In this study $D_{10}$ only was introduced into the formulation as a constraint. The predicted drop size and drop size distribution agreed well with the measured data.

  • PDF