• Title/Summary/Keyword: 선형 회귀 모델

Search Result 443, Processing Time 0.033 seconds

Proposal of allowable prediction error range for judging the adequacy of groundwater level simulation results of artificial intelligence models (인공지능 모델의 지하수위 모의결과 적절성 판단을 위한 허용가능 예측오차 범위 제안)

  • Shin, Mun-Ju;Ryu, Ho-Yoon;Kang, Su-Yeon;Lee, Jeong-Han;Kang, Kyung Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.449-449
    • /
    • 2022
  • 제주도는 용수의 대부분을 지하수에 의존하므로 지하수위의 예측 및 관리는 매우 중요한 사항이다. 제주도의 지층은 화산활동에 의한 현무암이 겹겹이 쌓여있는 형태를 나타내며 육지의 지층구조와 매우 다른 복잡한 형태를 나타낸다. 이에 따라 제주도 지하수위의 예측은 매우 난해하며, 최근에는 딥러닝 인공지능 모델을 활용하여 지하수위를 예측하는 연구사례가 증가하고 있다. 기존의 연구들은 인공지능 모델들이 지하수위를 적절히 예측한다고 보고하고 있으나 예측의 적절성에 대한 판단기준을 제시하지 못하였으므로 이에 대한 명확한 제시가 필요하다. 본 연구의 목표는 인공지능을 활용한 지하수위 예측오차가 허용 가능한지 판단할 수 있는 기준을 제시함에 있다. 이를 위해 전 세계의 과거 20년 동안 관련 연구결과들을 수집 및 분석하였으며, 분석 결과 인공지능 모델의 지하수위 예측오차는 지하수위 변동성이 큰 지역일수록 증가하는 것을 확인하였다. 이것은 지하수위의 변동형태가 크고 복잡할수록 인공지능 모델의 지하수위 예측성능은 낮아진다는 것을 의미한다. 이 관계를 명확하게 나타내기 위해 지하수위 최대변동폭과 평균제곱근오차 및 최대오차와의 관계를 선형회귀식으로 도출하여 허용가능한 예측오차 기준을 제시하였다. 그리고 기존 연구들에서 제시한 Nash-Sutcliffe 효율성지수와 결정계수를 분석하여 선형회귀식에 의한 기준을 보완할 수 있는 추가적인 기준을 제시하였다. 본 연구에서 제시한 인공지능 모델에 의한 지하수위 예측결과의 적절성 판단기준은 향후 지속적으로 증가하는 인공지능 예측연구에 유용하게 사용될 수 있다.

  • PDF

Clustering with Adaptive weighting of Context-aware Linear regression (상황인식기반 선형회귀의 적응적 가중치를 적용한 클러스터링)

  • Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.271-273
    • /
    • 2021
  • 본 논문은 이동노드의 클러스터링내에서 보다 효율적인클러스터링을 제공하고 유지하기위한 딥러닝의 선형회귀적 적응적 보정가중치에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 이웃한 이동노드중 목적노드와는 연결가능성이 가장높은 이동노드를 클러스터내에서 중계노드로 선택해야 한다. 본 연구에서는 이러한 상황정보를 이해하고 동적이동노드간 속도와 방향속성정보간의 상관관계의 친밀도를 고려한 자율학습기반의 회귀적 모델에서 적응적 가중치에 따른 분류를 제시한다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 적응적 가중치에 따른 딥러닝 모델을 제시 한다.

  • PDF

How to Improve Suitability of Irradiation Utilization in Development of Linear Regression Model for Estimating Paprika Productivity (파프리카 생산성 추정을 위한 선형 회귀모형 개발 시 외부광량 활용 적합성을 높이기 위한 방법)

  • Woo, Seung Mi;Kim, Ga Yeong;Kim, Ho Cheol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.779-783
    • /
    • 2021
  • The amount of sunlight (irradiation) acts as a very important factor for paprika (Capsicum annuum L.) productivity, but there are difficulties in developing a standard model for estimating paprika productivity using irradiation factors. This study was conducted to investigate how to increase the suitability of using irradiation as an independent variable when developing a standard model. In the linear regression analysis using the independent variable (cumulative irradiation) and the dependent variable (cumulative productivity) were classified as the average value of the total farm productivity (MTFP), and above and below (MHFP, MLFP) based on the average value, respectively. The RMSE value of the estimated linear regression model was 0.9418 kg·m-2 in the MHFP, which was significantly lower than 1.5468 kg·m-2 in the MTFP and 1.3812 kg·m-2 in the MLFP. And in due course of time (month), RMSE value was also the lowest in MHFP, below 1.0 kg·m-2 in all months. Therefore, when developing a regression model for estimating paprika productivity using irradiation, it is judged that it will improve the suitability of the estimation model by classifying and analyzing the difference in productivity of farms with an appropriate method.

Estimation of Cerchar abrasivity index based on rock strength and petrological characteristics using linear regression and machine learning (선형회귀분석과 머신러닝을 이용한 암석의 강도 및 암석학적 특징 기반 세르샤 마모지수 추정)

  • Ju-Pyo Hong;Yun Seong Kang;Tae Young Ko
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.39-58
    • /
    • 2024
  • Tunnel Boring Machines (TBM) use multiple disc cutters to excavate tunnels through rock. These cutters wear out due to continuous contact and friction with the rock, leading to decreased cutting efficiency and reduced excavation performance. The rock's abrasivity significantly affects cutter wear, with highly abrasive rocks causing more wear and reducing the cutter's lifespan. The Cerchar Abrasivity Index (CAI) is a key indicator for assessing rock abrasivity, essential for predicting disc cutter life and performance. This study aims to develop a new method for effectively estimating CAI using rock strength, petrological characteristics, linear regression, and machine learning. A database including CAI, uniaxial compressive strength, Brazilian tensile strength, and equivalent quartz content was created, with additional derived variables. Variables for multiple linear regression were selected considering statistical significance and multicollinearity, while machine learning model inputs were chosen based on variable importance. Among the machine learning prediction models, the Gradient Boosting model showed the highest predictive performance. Finally, the predictive performance of the multiple linear regression analysis and the Gradient Boosting model derived in this study were compared with the CAI prediction models of previous studies to validate the results of this research.

Analysis of Eunpyeong New Town Land Price Using Geographically Weighted Regression (지리가중회귀분석을 이용한 은평뉴타운 지가 분석)

  • Jung, Hyo-jin;Lee, Jiyeong
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.65-73
    • /
    • 2015
  • Newtown Business of Seoul had been performed to reduce deterioration of Gangbuk and economic inequality between Gangnam and Gangbuk. According to this, Eunpyeong-gu was set as test-bed for Newtown business and Newtown business had been completed until 2013. This study aims to analyze the influence of social and economical factors which affect land price using GWR (Geographically Weighted Regression) considered spatial effect. As a result of analysis, GWR model demonstrated a better goodness-of-fit than OLS (Ordinary least square) model typically used in most study. Furthermore, AIC value and Moran's I of residual prove that GWR model is more suitable than OLS model. GWR model enable to explain more detailed than global regression model as coefficient and sign show different value locally. In future, this research will be helpful to develop Eunpyeong-gu considering spatial characters and strength effectiveness of development.

Software Cost Estimation Model Based on Use Case Points by using Regression Model (회귀분석을 이용한 UCP 기반 소프트웨어 개발 노력 추정 모델)

  • Park, Ju-Seok;Yang, Hea-Sool
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.147-157
    • /
    • 2009
  • Recently, there has been continued research on UCP from the development effort estimation method to a software development project applying object oriented development methodology. Current research proposes a linear model estimating the developmenteffort by multiplying a constant to AUCP which applies technical and environmental factors. However, the fact that a non-linear regression model is more appropriate as the software size increases, the development period increases exponentially. In addition, in the UCP calculation process the occurrence of FP errors due to the application of TCF and EF, it is unrealistic to estimate the size with AUCP. This paper presents the issue of current research based on UCP without considering problems of the research, for example, TCF and EF and expresses the models (linear, logarithmic, polynomial, power and exponential type) estimating the development effort directly from UUCP. Consequently, the exponential model within non-linear models exhibit more accurate results than the current linear model. Therefore, after calculating the UUCP of the developing software system, using the proposed model to estimate the development effort, it is possible to estimate the direct cost required in development.

A Study on Emergency Node Detection Method based on Segmented Linear Regression (분할 선형 회귀를 이용한 Emergency node 감지 모델 연구)

  • Kim, Se-Jun;Lim, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.197-198
    • /
    • 2018
  • 본 논문에서는 산업 IoT (IIoT) 환경에서 생산 설비 내 각 센서 노드의 데이터 이상 여부를 게이트웨이에서 판단하는 Emergency node 선정 모델을 제안하였다. 이 모델은 IIoT 환경이 적용된 생산 설비의 Emergency 상태 즉, 이상 동작으로 인한 온도, 진동 데이터 등의 비정상적인 수집을 구분하여 즉각적으로 대응할 수 있도록 하는 것을 목표로 한다. 본 논문에서는 분할 선형 회귀를 통하여 주기 내 데이터의 허용 범위를 계산하여 기존의 Threshold 방식보다 정확하고 범용적으로 Emergency node를 분류한다.

  • PDF

Development of the Linear Regression Analysis Model to Estimate the Shear Strength of Soils (흙의 전단강도 산정을 위한 선형회귀분석모델 개발)

  • Lee, Moon-Se;Ryu, Je-Cheon;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.177-189
    • /
    • 2009
  • The shear strength has been managed as an important factor in soil mechanics. The shear strength estimation model was developed to evaluate the shear strength using only a few soil properties by the linear regression analysis model which is one of the statistical methods. The shear strength is divided into two part; one is the internal friction angle (${\phi}$) and the other is the cohesion (c). Therefore, some valid soil factors among the results of soil tests are selected through the correlation analysis using SPSS and then the model are formulated by the linear regression analysis based on the relationship between factors. Also, the developed model is compared with the result of direct shear test to prove the rationality of model. As the results of analysis about relationship between soil properties and shear strength, the internal friction angle is highly influenced by the void ratio and the dry unit weight and the cohesion is mainly influenced by the void ratio, the dry unit weight and the plastic index. Meanwhile, the shear strength estimated by the developed model is similar with that of the direct shear test. Therefore, the developed model may be used to estimate the shear strength of soils in the same condition of study area.

Determination of the Strength and Stiffness Degradation Factor for Circular R/C Bridge Piers (원형 철근콘크리트 교각의 강성 및 강도감소지수 결정)

  • 이대형;정영수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.73-82
    • /
    • 2000
  • 본연구의 목적은 반복하중을 받는 철근콘크리트 교량 교각의 비선형 이력거동을 해석적으로 예측하는 것이다 이를 위해서 반복적인 횡하중이 작용하는 경우에 실험결과와 일치하는 교각의 하중-변위 이력곡선을 도출하고자 수정된 trilinar 이력거동모델을 이용하였다 철근과 콘크리트의 비선형 거동특성과 각 하중단계에 따른 교각의 중립축을 구하여 소성힌지부의 모멘트와 변형률을 구하고 반복하중하에서의 강성의 변화를 해석적으로 모형화하기 위하여 각기 다른 강성을 갖는 5가지 지선을 갖춘 형태의 이력거동모델식을 제안하였다 본 연구에서는 실험적으로 구한 하중-변위 이력곡선을 이용하여 축하중비 주철근비 및 구속철근비에 따른 강도감소지수와 강성감소지수의 영향을 회귀분석을 이용하여 일반식으로 제안하였다 새로운 이력거동 해석 모델을 프로그램 SARCF III에 적용함으로써 기존 철근콘크리트 교각에 강도 및 강성감소 현상을 정확하게 예측하였다

  • PDF