• 제목/요약/키워드: 선형 판별분석

검색결과 194건 처리시간 0.022초

라그랑지 기법을 쓴 영 공간 기반 선형 판별 분석법의 변형 기법 (Transformation Technique for Null Space-Based Linear Discriminant Analysis with Lagrange Method)

  • 호우위시;민황기;송익호;최명수;박선;이성로
    • 한국통신학회논문지
    • /
    • 제38C권2호
    • /
    • pp.208-212
    • /
    • 2013
  • 부류안 분산 행렬의 특이성 때문에 선형 판별 분석은 작은 표본 크기 문제에 쓰기에 알맞지 않다. 이에 선형 판별 분석을 확장하여 작은 표본 크기 문제에서 좋은 성능을 갖는 영 공간 기반 선형 판별 분석이 제안되었다. 이 논문에서는 라그랑지 기법을 바탕으로 하여, 영 공간 기반 선형 판별 분석을 써서 특징을 추출하는 문제를 선형 방정식 문제로 바꾸는 과정을 제안하였다.

선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식 (Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers)

  • 오병주
    • 한국콘텐츠학회논문지
    • /
    • 제5권6호
    • /
    • pp.41-48
    • /
    • 2005
  • 이 논문은 얼굴인식을 수행하기 위해서 이미 잘 알려진 주성분 분석법과 선형판별 분석법에 레이디얼 기저 함수 신경망을 결합한 인식 알고리즘을 제시하였다. 입력된 원래의 얼굴영상은 주성분분석법을 통하여 차원을 줄인 고유 얼굴 가중치를 산출한다. 이 가중치 벡터를 선형판별 분석법의 입력데이터로 사용하여 선형판별분석의 변환행렬을 계산할 때 클래스 내의 분산행렬에서 특이점이 발생하지 않도록 하면서 특징벡터를 산출하여 인식을 수행하였다. 두 번째 시도에서는 선형판별분석법에 의해 생성된 특징벡터를 레이디얼 기저 함수 신경망에 입력하여 학습하고 얼굴인식을 수행하였다. ORL DB의 얼굴영상에 대해 실험한 결과 93.5%의 인식률을 얻을 수 있었다.

  • PDF

IPAA의 효과를 고찰하기 위한 분류분석방법들의 비교연구

  • 이승연;이은주;최호식
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.291-298
    • /
    • 2005
  • 지속성 외래 복막투석은 말기 신부전 환자들에게 널리 시행하는 신 대체 요법으로, 복막투석 환자에게서 주된 합병증으로 일어나는 단백질-열량 영양실조를 치료하기 위하여 아미노산을 복강 내로 주입하는 치료방법이다. 이현석 등(2004)의 연구에서는 아미노산 복막 투석액(IPAA)이 영양실조 환자들에게 실제로 영양상태에 미치는 영향을 평가하기 위하여 지속성 외래 복막투석 환자 43명을 12개월 동안 3개월 주기로 관측하여 얻어낸 반복측정자료를 바탕으로 IPAA의 효과 여부에 따라 반응군과 비반응군을 분류하였다. 본 논문에서는 이러한 두 그룹을 효과적으로 분류할 수 있는 분류기준변수들을 찾아내고 이 분류기준변수의 값을 바탕으로 새로운 환자에게 IPAA의 투여 여부를 진단할 수 있는 여러 분류방법들을 고찰하여 비교 연구하였다. 모수적인 방법으로 선형판별분석, 이차판별분석 및 로지스틱 판별분석을 소개하고 비모수적인 방법으로 support vector machine(SVM)을 소개하여 분류분석의 결과를 비교하여 두 그룹을 최소한의 오류로 분류하는 방법을 제안하였다.

  • PDF

일반화된 판별분석 기법을 이용한 능동소나 표적 식별 (Sonar Target Classification using Generalized Discriminant Analysis)

  • 김동욱;김태환;석종원;배건성
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.125-130
    • /
    • 2018
  • 선형판별분석(LDA) 기법은 특징벡터의 차원을 줄이거나 클래스 식별에 이용되는 통계적 분석 방법이다. 그러나 선형 분리가 불가능한 데이터 집합의 경우에는 비선형 함수를 이용하여 특징벡터를 고차원의 공간으로 사상(mapping) 시켜줌으로써 선형 분리가 가능하도록 만들 수 있는데, 이러한 기법을 일반화된 판별분석(GDA) 또는 커널판별분석(KDA) 기법이라고 한다. 본 연구에서는 인터넷에 공개되어 있는 능동소나 표적신호에 LDA 및 GDA 기법을 이용하여 표적식별 실험을 수행하고, 그 결과를 비교/분석하였다. 실험 결과 104개의 테스트 데이터에 대해 LDA 기법으로는 73.08% 인식률을 얻었으나 GDA 기법으로는 95.19%로 기존의 MLP 또는 커널 기반 SVM에 비해 나은 성능을 보였다.

직교요인을 이용한 국소선형 로지스틱 마이크로어레이 자료의 판별분석 (Local Linear Logistic Classification of Microarray Data Using Orthogonal Components)

  • 백장선;손영숙
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.587-598
    • /
    • 2006
  • 본 논문에서는 마이크로어레이 (microarray) 자료에 판별분석을 적용 시 나타나는 고차원 및 소표본 문제의 해결방법으로서 직교요인을 새로운 특징변수로 사용한 비모수적 국소선형 로지스틱 판별분석을 제안한다. 제안된 방법은 국소우도에 기반한 것으로서 다범주 판별분석에 적용될 수 있으며, 고려된 직교인자는 주성분 요인, 부분최소제곱 요인, 인자분석 요인 등이다. 대표적인 두 가지 실제 마이크로어레이 자료에 적용한 결과 직교요인들 중에서 부분최소제곱 요인을 특징변수로 사용한 경우 고전적인 통계적 판별분석보다 향상된 분류 능력을 나타내고 있음을 확인하였다.

회귀문제를 위한 비선형 특징 추출 방법 (Nonlinear feature extraction for regression problems)

  • 김성민;곽노준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 추계학술대회
    • /
    • pp.86-88
    • /
    • 2010
  • 본 논문에서는 회귀문제를 위한 비선형 특징 추출방법을 제안하고 분류문제에 적용한다. 이 방법은 이미 제안된 선형판별 분석법을 회귀문제에 적용한 회귀선형판별분석법(Linear Discriminant Analysis for regression:LDAr)을 비선형 문제에 대해 확장한 것이다. 본 논문에서는 이를 위해 커널함수를 이용하여 비선형 문제로 확장하였다. 기본적인 아이디어는 입력 특징 공간을 커널 함수를 이용하여 새로운 고차원의 특징 공간으로 확장을 한 후, 샘플 간의 거리가 큰 것과 작은 것의 비율을 최대화하는 것이다. 일반적으로 얼굴 인식과 같은 응용 분야에서 얼굴의 크기, 회전과 같은 것들은 회귀문제에 있어서 비선형적이며 복잡한 문제로 인식되고 있다. 본 논문에서는 회귀 문제에 대한 간단한 실험을 수행하였으며 회귀선형판별분석법(LDAr)을 이용한 결과보다 향상된 결과를 얻을 수 있었다.

  • PDF

포톤 카운팅 선형판별법을 이용한 저해상도 얼굴 영상 인식 (Low Resolution Face Recognition with Photon-counting Linear Discriminant Analysis)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.64-69
    • /
    • 2008
  • 얼굴영상의 인식 기술은 보안과 감시를 비롯하여 머신 인터페이스와 콘텐츠 검색 등에서 활용이 광범위 하다. 그러나 주로 고해상도 영상이 연구의 대상이었고 원거리에서 획득된 저해상도 표적에 대하여 상대적으로 드물게 연구가 이루어졌다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법을 이용하여 저해상도 환경에서 얼굴영상의 인식을 수행한다. 포톤 카운팅 선형판별법은 Fisher 선형 판별법에서 발생하는 특이행렬 문제없이 Fisher의 최적화 기준을 실현한다. 즉, 차원의 축소나 특징 추출 과정 없이 고차원 공간에서 최적화된 투영을 위한 선형판별함수를 구성하고 이를 이용하여 판정하므로 저해상도 환경을 비롯한 얼굴영상의 왜곡의 극복에 효과적이다. 실험 결과는 제안한 방법이 주성분 분석을 활용하는 Eigen face 또는 주성분 분석과 Fisher 선형판별법이 결합된 Fisher face보다 우수하다는 것을 보여준다.

투사지향방법에 의한 판별분석의 모의실험분석 (A simulation study on projection pursuit discriminant analysis)

  • 안윤기;이성석
    • 응용통계연구
    • /
    • 제5권1호
    • /
    • pp.103-111
    • /
    • 1992
  • 다변량 통계분석기법중 하나로 제기된 투사지향방법은 다변량자료를 관심있는 일차원 또는 이차원의 자료로의 선형투사를 찾아 나가는 방법이다. 이 방법은 다변량 자료가 갖는 차원의 문제를 해결해 줄 수 있는 유용한 기법으로 제시되었다. 본 연구에서는 투사지향방법을 이용하여 추정한 다변량 확률밀도함수를 사용한 새로운 비모수적인 판별분석방법을 제시하고, 이를 기존의 모수적 판별분석방법중 실제적으로 많이 사용되는 선형판별함수방법, 그리고 기존의 비모수적 판별분석방법중 계산상의 편리성이 많은 K-최인접방법과 컴퓨터 시뮬레이션을 통하여 비교분석하였다.

  • PDF

주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis)

  • 김욱동;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.735-740
    • /
    • 2012
  • 본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.

자료별 분류분석(DDA)에 의한 특징추출 (Datawise Discriminant Analysis For Feature Extraction)

  • 박명수;최진영
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.90-95
    • /
    • 2009
  • 본 논문은 선형차원감소(Linear Dimensionality Reduction)을 위해 널리 이용되고 있는 특징추출 알고리듬인 선형판별분석(Linear Discriminant Analysis)의 문제점을 해결할 수 있는 새로운 특징추출 알고리듬을 제안한다. 선형판별분석에 포함되는 평균-자료 간 거리 및 평균-평균 간의 거리에 기반한 분산행렬은 역행렬 연산, 계수의 제한 등으로 인하여 계산상의 문제와 추출되는 특징의 수가 제한되는 한계를 가지고 있다. 또한 자료의 집단이 단일 모드의 정규 분포로부터 얻어진 것으로 가정되며 그렇지 않은 경우에 대해서는 적절한 결과를 얻을 수 없다. 본 논문에서는 자료-자료 간의 거리에 기반하고 적절하게 가중치가 추가된 새로운 행렬을 정의하였으며. 이에 기반하여 특징을 추출하는 방법을 제안하였다. 그럼으로써 앞서 선형판별분석의 여러 문제를 해결하고자 시도하였다. 제안된 방법의 성능을 실험을 통해 확인하였다.