• Title/Summary/Keyword: 선형 누적손상이론

Search Result 5, Processing Time 0.022 seconds

A Cumulative Damage Theory of Concrete under Variable Amplitude Fatigue Loadings (변동진폭(變動振幅)의 피로하중(疲勞荷重)을 콘크리트의 누적손상이론(累積損傷理論))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.79-88
    • /
    • 1986
  • A nonlinear cumulative damage theory, which can model the effects of the magnitude and sequence of variable amplitude fatigue loadings, is proposed. The concrete beam specimens are prepared and tested in four-point flexural loading conditions. The variable-amplitude fatigue loadings in two and three stages are considered. The present experimental study indicates that the fatigue failure of concrete is greatly influenced by the magnitude and sequence of applied, variable-amplitude fatigue loadings. It is seen that the linear damage theory proposed by Palmgren and Miner is not directly applicable to the concrete under such loading cases. The sum of the cumulative damage is found to be greater than 1 when the magnitude of fatigue loading is gradually increased and less than 1 when the magnitude of fatigue loading is gradually decreased. The proposed nonlinear damage theory, which includes the effects of the magnitude and sequence of applied fatigue loadings, allows more realistic fatigue analysis of concrete structures.

  • PDF

Study on Fatigue Life Estimation for Aircraft Engine Support Structure (항공기 엔진 지지구조물의 피로수명 해석에 관한 연구)

  • Hur, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1667-1674
    • /
    • 2010
  • The fatigue life is estimated while determining the reliability of aircraft structures. In this study, the estimation of fatigue life was carried out on the basis of a cumulative damage theory; the working S-N curve and the equivalent stress on the engine support structure significantly affect the safety of the aircraft. The maximum stress observed was 1,080 MPa in the case of scissors link under crash load condition, and there was a 5% margin for the allowable stress corresponding to the temperature reduction factor. The maximum stress was 876 MPa, and the stress equation coefficient had a maximum value of 0.019 MPa/N in the case of scissors link under fatigue loads. In the results of the fatigue life analysis, the safety life in a fretting area of scissors link upper part was 416,667 flight hour, and other parts showed to infinite life. Therefore, it was demonstrated that the fatigue life requirement of aircraft engine support structure (scissors link, straight link) could be satisfied.

Fatigue Life Evaluation of an Actual Structure under the Irregular Loading using an Acceleration Test (가속시험을 통한 불규칙하중을 받는 실구조물의 피로수명평가)

  • 김형익;배봉국;박재실;석창성;모진용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.166-169
    • /
    • 2004
  • A fatigue test was used to evaluate the fatigue life of an actual structure. The loaded state and the constraint condition of an actual structure must be same as the specimen in order to apply the test results to an actual structure by the specimen. The loaded state and constraint conditions can't be same as the specimen in the actual structure which is complicated. In order to reduce these differences, an actual structure test with a lot of frequencies is need to get a fatigue life curve. Therefore, ten sets of accelerated test units which attached unbalanced mass were composed in this study. Acceleration history about the vibration of an actual structure was acquired. Rainflow counting was used on acceleration history, and the life curve return formula was assumed. The return formula that damage satisfied `1' was acquired in a feedback process by the Miner's rule, which was the linear cumulative damage theory. A conservative fatigue life curve was determined with a return formula to have been presumed by each set. The fatigue life of regular rpm condition was calculated by these conservative fatigue life curves.

  • PDF

Fatigue Reliability Evaluation of Steel-Composite High-Speed Railway Bridge with Tuned Mass Damper (동조질량감쇠기를 장착한 강합성형 고속철도교의 피로신뢰성 평가)

  • Kang, Soo-Chang;Seo, Jeong-Kwan;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.1-10
    • /
    • 2005
  • This study proposes a fatigue reliability evaluation procedure for steel-composite high-speed railway bridge based on dynamic analysis and investigates the effectiveness of Tuned Mass Damper(TMD) in terms of the extension of fatigue life of the bridge. For the fatigue reliability evaluation, the limit state is determined using S-N curve and linear fatigue-damage accumulation. Dynamic analyses are peformed repeatedly to consider the uncertainties of train-velocity and damping ratio of the bridge. The distribution of random variables related to fatigue damage for the intended service life is then statistically estimated from analytical results. Finally, the fatigue reliability indices are obtained by means of the Advanced First-Order Second-Moment (AFOSM) method. Through numerical simulation of a steel-composite bridge of 40m span, the effectiveness of TMD on fatigue life of the bridge is examined and the results are presented.

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.