• Title/Summary/Keyword: 선행예측

Search Result 1,193, Processing Time 0.05 seconds

Natural Disaster Damage Cost Prediction Model based on Neural Network and Genetic Algorithm (신경망과 유전자 알고리즘을 이용한 자연재해 피해예측 모델 연구)

  • Choi, Seon-Hwa
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.380-384
    • /
    • 2010
  • 기후온난화, 국지성 호우 및 대규모 태풍으로 인한 피해가 증대되면서 사회 경제적 손실 또한 날로 증가하고 있어 재해로 인한 피해 발생가능성을 효율적으로 예측하는 모델을 통한 선제적 대응이 필요하다. 재난 재해의 위험성 분석 방법은 주로 확률 통계기법을 기반으로 하는 연구가 주류를 이루었으나, 본 논문에서는 포착된 현상의 데이터를 이용해 그 데이터를 지배하는 경험적 규칙성을 학습하고 획득하는데 다른 기법보다 탁월한 성능을 가진 신경망 모델을 적용하여 자연재해 피해예측 모델을 연구하였다. 1991년부터 2005년 사이에 우리나라에서 발생한 자연재해의 피해자료와 기상개황 자료를 이용하여 지역별 자연재해로 인한 피해를 예측하는 신경망 모델은 우리나라 232개 행정구역에 대하여 누적강우량과 최대풍속, 그리고 재해사상 발생 5일 이내의 선행강우량을 입력변수로 하고 총 피해액을 출력변수로 한다. 또한 학습을 통한 최적의 해를 찾기 위해 신경망의 매개변수 학습률, 모멘텀, 편의값을 유전자알고리즘으로 결정하여 학습을 수행 하였다.

  • PDF

A Study on the Risk Impact Map Development of Considering the Debris flow Hazard and Impact Level (토석류 발생가능성 및 시설안전성을 고려한 토석류 위험지도작성에 관한 연구)

  • Nam, Dong Ho;Lee, Suk Ho;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.296-296
    • /
    • 2019
  • 전 세계적으로 기후변화로 인한 국지성 집중호우 및 태풍으로 인한 피해가 지속적으로 발생하고 있으며, 그에 따른 2차 피해인 산사태 및 토석류 피해 또한 증가하고 있는 추세이다. 최근 국내의 산사태 및 토석류에 대한 선행연구는 지속적으로 수행되고 있으나, 산사태 및 토석류 위험성이 높은 구간, 즉, 발생기작을 판단할 수 있도록 지표화 해놓은 것이며, 현재 피해예측지도 및 피해 하류부의 시설물을 고려한 연구는 미비한 실정이다. 따라서 본 연구에서는 강우-유출모형인 S-RAT모형 및 토석류 수치해석 프로그램 RAMMS 모형을 이용하여 산사태 및 토석류 피해를 극대화 시키는 인자인 토석유동심(H), 토석유속(V)을 이용하여 토석류피해예측지도를 작성하였으며, 피해 하류부의 시설물을 건물 유형별 시설물의 중요도로 구분하였다. 또한 작성된 피해예측지도 및 시설물 중요도를 중첩하여 위험성 지도를 제시하였다.

  • PDF

Term of Penalty Prediction using ChatGPT (ChatGPT 를 이용한 형사사건 양형 예측 연구)

  • Minhan Cho;Jinyoung Han
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.784-785
    • /
    • 2024
  • 형량 예측 연구는 법률 인공지능에서 가장 활발히 연구되고 있는 분야 중 하나이며, 비법률전문가의 사법 신뢰도 상승과 법률전문가의 업무 부담 완화에 긍정적 영향을 줄 수 있다. 본 연구는 형사 사건의 양형 예측에 ChatGPT 를 접목하여 입력된 사실관계와 유사한 선행 판례를 검색함으로써 형량 예측에 필요한 모델의 훈련 시간과 비용을 절감하는 접근법을 제안한다. 본 모델의 weighted F1-score 는 0.53 으로, 미세조정된 BERT 모델과 유사한 성능을 기록하였다.

Forecasting monthly precipitation of Gyeongan-cheon watershed using teleconnection with global climate indices (글로벌 기후지수와의 원격상관을 이용한 경안천 유역의 월 강수량 예측)

  • Kim, Chul-gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Nam-won;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.314-314
    • /
    • 2019
  • 가뭄대응 및 이수분야 활용을 위한 장기 기상예측정보 확보를 위해, 경안천 유역을 대상으로 전구기후지수의 원격상관 패턴을 이용하여 통계적 기반의 다중회귀모형을 구성하고 월 강수량의 예측가능성을 평가하였다. 예측인자로서 미국 NOAA에서 제공하는 기후지수 중 총 37개의 지수에 대해 1948~2018년의 월 자료를 이용하였으며, 예측대상인 경안천 월 강수량은 1966~2018년의 유역평균 강수량 자료를 활용하였다. 각 기후지수별 1~24개월 선행자료와 예측대상년도 월 강수량과의 상관분석을 통해 상관성이 높은 기후자료를 선별하여 다중회귀모형의 독립변수로 적용하였다. 예측대상년도를 기준으로 과거 40년의 자료(월 강수량 및 월 기후지수)를 보정자료와 검정자료로 구분(20년씩 무작위로 추출)하고, 보정기간에 대해 도출된 회귀모형 중 검정기간을 대상으로 예측성이 좋은 100개의 회귀모형을 선별하여 예측대상기간에 대한 예측모형으로 활용하였다. 2006~2018년에 대해 전망기간별(1개월, 3개월, 6개월, 12개월)로 각 월별 100개 회귀모형으로 부터의 예측값(예측치의 범위)이 실제 관측치를 포함하는 경우를 월별로 분석한 결과 10월이 가장 높고(83%), 11월(81%), 1월(79%), 8월(77%), 6월(75%), 12월(71%)의 순으로 높게 나타났으며, 상대적으로 7월(29%)과 3월(44%)의 예측성이 낮은 것으로 나타났다. 통계적 모형의 특성상 전망기간에 따른 예측의 정확도는 비례하지 않았다. 예측치의 편차는 크지 않지만 예측성이 낮게 나타나는 기간(3월, 2월)과 예측성은 높지만 예측범위가 크게 나타나는 기간(8월, 6월)에 대해서는 예측모형의 재검토 및 다양한 규모의 유역에 대한 적용을 통해 예측인자 추가 및 보완 등을 수행할 예정이다.

  • PDF

Development of Urban Flood System using GUI (GUI를 이용한 도시홍수 예경보시스템의 구성)

  • Lee, Beum-Hee;Kim, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2184-2188
    • /
    • 2008
  • 최근 도시의 발달은 하상공간에 대한 이용도를 높이는 방향으로 개발이 진행되어가는 추세이며, 하상도로 및 하상주차장의 이용은 이제 도시 내에서 이용 가능한 마지막 여유 공간으로 인식될 정도로 그 의존도가 높아져가고 있다. 그러나 하상공간의 활용도가 높아져갈 수록 도시홍수의 발생으로 인한 대피문제가 발생하게 되고 돌발홍수로 인하여 하상도로의 차단 혹은 하상 주차장에 주차된 차량의 소거가 늦어지는 경우 고스란히 피해를 보게 되는 등 그 부작용도 계속 증가되고 있다. 도시홍수의 특성을 살펴보면 국지성 돌발 강우에 의한 유량의 급격한 증가와 짧은 유하시간, 작은 유역면적 등에 의하여 주요 예보지점까지의 도달시간이 매우 짧아 수문학적 홍수예측 모형을 이용하여 홍수예측 업무를 수행하는데 선행시간을 충분히 확보할 수 없다는 단점을 지니고 있다. 이에 따라 본 연구에서는 기존의 하천시스템에 대한 모의모형을 통하여 홍수 예경보를 발령하기에는 선행시간의 확보(대피시간의 확보)라는 측면에서 상당한 어려움을 지닐 수 있으므로 시시각각으로 측정되는 실시간 수위측정 자료 및 실시간 강우자료를 이용하여 모형의 수행과정을 생략하고, 하천의 수위변동을 직접 예측하여 대피할 수 있는 통계학적 모형 (회귀분석 기법) 기반의 수문모형을 개발하였다. 이를 위하여 각 관측 자료로부터 대상 지점(홍수 예보지점)의 수위를 간단한 입력 자료만으로도 직접 구할 수 있는 통계학적 기법을 활용하여 홍수예보 업무를 실시할 수 있도록 하였다. 이에 따라 강우강도 등의 강우정보, 하천 수위정보 등을 이용하여 간단한 홍수예보가 가능한 규칙을 제시하였고, 홍수예보 업무에 신속하게 대응할 수 있는 시스템을 구축하기 위하여 Visual Basic 6.0을 사용한 GUI 기반의 홍수예측 수문모형을 구성하였으며, 제어변수(control variable)로는 강우 관측자료, 수위 등 유출관측 자료로 구분하여 수문모형을 구성함으로써 실무자들이 쉽게 활용할 수 있는 홍수 예경보 시스템의 기본모형을 제시하였다.

  • PDF

Prediction and Field Measurement of Settlement due to Preloading at the Delta of Nakdong River (낙동강 삼각주에서 선행하중에 따른 침하예측 및 현장계측)

  • 정성교;백승훈;김규종;이대명
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.99-110
    • /
    • 1999
  • Settlement and consolidation time were predicted through systematic soil investigation at the delta of Nakdong river where the preloading method was applied. Field measurements were executed with well-selected instruments. As the results of the comparison, the predicted settlement on the sand layer of about 20m thick underestimated the observed one by 20%. This underestimation was due to the effects of vibration during installation of PBD, creep, the overestimated deformation modulus, and so on. For the clay layer of about 20m in thickness under the sand layer, an ID analysis for underconsolidated soil initially overestimated the observed settlement by 240%. However, when the laboratory compression curve was reconstructed and a conventional ID analysis for NC clay was applied, the re-calculated settlement of the clay layer was relatively similar with the observed one. And the predicted consolidation time was about 45% less than the observed one, because of different influencing factors.

  • PDF

Forecasting of Runoff Hydrograph Using Neural Network Algorithms (신경망 알고리즘을 적용한 유출수문곡선의 예측)

  • An, Sang-Jin;Jeon, Gye-Won;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.505-515
    • /
    • 2000
  • THe purpose of this study is to forecast of runoff hydrographs according to rainfall event in a stream. The neural network theory as a hydrologic blackbox model is used to solve hydrological problems. The Back-Propagation(BP) algorithm by the Levenberg-Marquardt(LM) techniques and Radial Basis Function(RBF) network in Neural Network(NN) models are used. Runoff hydrograph is forecasted in Bocheongstream basin which is a IHP the representative basin. The possibility of a simulation for runoff hydrographs about unlearned stations is considered. The results show that NN models are performed to effective learning for rainfall-runoff process of hydrologic system which involves a complexity and nonliner relationships. The RBF networks consist of 2 learning steps. The first step is an unsupervised learning in hidden layer and the next step is a supervised learning in output layer. Therefore, the RBF networks could provide rather time saved in the learning step than the BP algorithm. The peak discharge both BP algorithm and RBF network model in the estimation of an unlearned are a is trended to observed values.

  • PDF

Prediction of Various Properties of Soft Ground Soils using Artificial Neural Network (인공신경망을 이용한 연약지반의 지반설계정수 예측)

  • Kim, Young Su;Jeong, Woo Seob;Jeonge, Hwan Chul;Im, An Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.81-88
    • /
    • 2006
  • This study performed field and laboratory tests for poor subsoils taken in six regions of the country and determined undrain shear strength. Su values and preconsolidation pressure are predicted using Back Propagation neural network (BPNN) and the application of BPNN is verified. The result of BPNN shows that correlation coefficient between test and neural network result is over 0.9, which means high correlativity. Especially the neural network uses only 6 parameters such as natural water content, void ratio, specific gravity, rate of passing 200th sieve, liquid limits and plasticity index among various affecting factors to estimate value and the correlation coefficent is 0.93. The conclusions obtained in this paper are from the tests performed for poor subsoils taken in the several regions of the country. If there were more test results, the prediction and influence of various soil properties could be effectively performed by neural network.

Prediction of rainfall abstraction based on deep learning considering watershed and rainfall characteristic factors (유역 및 강우 특성인자를 고려한 딥러닝 기반의 강우손실 예측)

  • Jeong, Minyeob;Kim, Dae-Hong;Kim, Seokgyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.37-37
    • /
    • 2022
  • 유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.

  • PDF

A study on English vowel duration with respect to the various characteristics of the following consonant (후행하는 자음의 여러 특성에 따른 영어 모음 길이에 관한 연구)

  • Yoo, Hyunbin;Rhee, Seok-Chae
    • Phonetics and Speech Sciences
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • The purpose of this study is to investigate the difference of vowel duration due to the voicing of word-final consonants in English and its relation to the types of word-final consonants (stops vs. fricatives), (partial) devoicing, and stop releasing. Addtionally, this study attempts to interpret the findings from the functional view that the vowels before voiced consonants are produced with a longer duration in order to enhance the salience of the voicing of word-final consonants. This study conducted a recording experiment with English native speakers, and measured the vowel duration, the degree of (partial) devoicing of word-final voiced consonants and the release of word-final stops. First, the results showed that the ratio of the duration difference was not influenced by the types of word-final consonants. Second, it was revealed that the higher the degree of (partial) devoicing of word-final voiced consonants, the longer vowel duration before word-final voiced consonants, which was compatible with the prediction based on the functional view. Lastly, the ratio of the duration difference was greater when the word-final stops were uttered with the release compared to when uttered without the release, which was not consistent with the functional view. These results suggest that it is not sufficient enough to explain the voicing effect by its function of distinguishing the voicing of word-final consonants.