• Title/Summary/Keyword: 선택적 학습률

검색결과 94건 처리시간 0.027초

지역적 특성을 갖는 동적 선택 방법에 기반한 다중 인식기 시스템 (A Multiple Classifier System based on Dynamic Classifier Selection having Local Property)

  • 송혜정;김백섭
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.339-346
    • /
    • 2003
  • 본 논문에서는 지역적 특성을 가지는 작은 인식기(마이크로 인식기)의 모음으로 인식기를 구현하는 다중 인식기 시스템을 제안한다. 각 학습패턴에서 k개의 이웃한 학습패턴을 추출해서 학습한 인식기를 마이크로인식기라고 한다. 각 학습패턴에는 한개 이상의 마이크로 인식기를 부여한다. 본 논문에서는 선형 커널을 사용한 SVM과 RBF 커널을 사용한 SVM등 두 가지 형태의 마이크로 인식기를 사용한다. 테스트 패턴이 인가되면 테스트패턴 주변의 마이크로인식기들 중에서 성능이 가장 좋은 것 하나를 선택한 후 선택된 인식기로 최종 클래스를 결정한다. 테스트패턴 주변에 있는 학습패턴들을 인식한 결과를 성능 측정 척도로 사용한다. Elena 데이터 베이스를 사용하여 기존의 단일 인식기, 다중 인식기 결합, 다중 인식기 선택 방법들과 인식률을 비교한 결과 제안된 방법이 우수함을 알 수 있다.

효과적인 영상 인식을 위한 개선된 퍼지 ART 알고리즘 (An Enhanced Fuzzy ART Algorithm for Effective Image Recognition)

  • 김광백;박충식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.262-267
    • /
    • 2007
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 학습률의 설정에 따라 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 학습률로 설정하여 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 영문 명함에서 추출한 영문자들을 대상으로 실험한 결과, 기존의 ART1과 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

  • PDF

흰쥐의 실험적 건망모델에 있어 항치매 효과물질의 약효검색에 관한연구(I)

  • 이영근;류항목;양지선;김옥희;최병천;이숙영
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1992년도 제1회 신약개발 연구발표회 초록집
    • /
    • pp.43-43
    • /
    • 1992
  • 최근 수년 전부터 학습(learning), 기억(memory)의 분자약리학적 기전과 치매(dementia)의 신경생리학적 원인 규명에 대한 연구가 사회적 요구에 부응하여 증가하고 있다. 이에 본 연구에서는 횐쥐를 이용하여 실험실적 건망모델을 설정하여 항치매 물질의 효력 screening을 시도하였다. 실험실적 건망모델은 다음 두 가지 방법으로 설정하였다. 첫째, Acetylcholine 길항제인 Scopolamine을 사용하여 중추신경계중 기억, 학습기전과 관련된 것으로 알려진 cholinergic신경계률 차단하여 유발한 실험적 건망모델과, 둘째, 단백질합성 저해제인 cycloheximide를 사용하여 기억, 학습경로에 관여하는 수종의 중추 단백질듈을 비선택적으로 저해하여 유발한 실험적 건망모델을 이용하여 인삼, 오미자등의 항치매 효과를 검색하고자 수동적 회피학습능, 능동적 회피학습능, 자발운동량을 측정하여 기억, 학습, 행동의 상관 관계를 고찰하였다.

  • PDF

동적 상호작용 함수를 애용한 검색 피드백의 개선 (Improvement of Retrieval Feedback Using Dynamic Interaction Function)

  • 한정수
    • 한국콘텐츠학회논문지
    • /
    • 제6권2호
    • /
    • pp.93-98
    • /
    • 2006
  • 본 논문은 컴포넌트 검색 시스템의 성능을 향상시키기 위해 사용자 피드백을 효율적으로 수행하는 방법을 제안하고자 한다. 기존의 퍼지 기법이 적용된 퍼지화 함수는 컴포넌트를 선택할 때마다 매번 4가지 경우의 그래프를 재구성해야 하는 어려움이 있다. 본 연구에서는 이러한 피드백의 단점을 극복하기 위하여 검색된 컴포넌트의 선택여부에 따라 동일한 함수이지만 학습률을 달리할 수 있는 가우시안 함수를 이용한 상호작용 함수를 제안한다. 가우시안 함수를 피드백 함수로 채택 시 함수의 파라메타에 따른 검색 성능을 비교하고, 이를 토대로 가장 효율적인 동적 상호작용 함수를 제안하여 효율적인 검색 시스템을 구축하고자 한다.

  • PDF

SVM과 인공신경망을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구 (Defect Diagnostics of Gas Turbine Engine with Altitude Variation Using SVM and Artificial Neural Network)

  • 이상명;최원준;노태성;최동환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.209-212
    • /
    • 2006
  • 본 논문에서는 항공기용 터보 축 엔진의 결함 진단 알고리즘을 개발하지 위해 Support Vector Machine(SVM)과 인공신경망(ANN)을 이용하였다. SVM을 이용하여 결함 위치를 판별한 후 인공신경망이 선택적으로 학습하는 분할 학습 알고리즘(SLA)을 제안하였으며 이를 고도 변화에 따른 가스 터빈 엔진의 결함 진단에 적용하여 분류 속도 및 예측 정확률 개선 가능성을 확인하였다.

  • PDF

도시 영상에서의 Inlier 선택과 Database Redundancy 감소 기법 (Inlier selection and Database Redundancy Reducing Method in Urban Environment)

  • 안하은;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.29-32
    • /
    • 2016
  • 특징점 기반 건물인식 시스템에서는 강건한 특징점을 추출하는 것이 인식률 향상에 바로 직결되는 중요한 요소이다. 영상에서 특징점들이 너무 많이 추출되는 경우 인식이나 학습단계에서의 알고리즘 수행 시간을 증가시키는 원인이 된다. 또환 중요하지 않은 특징점(배경이나 가려짐 영역, 기타 객체에서 추출된 특징점)이나 조명 변화에 민감한 영역에서 임의로(arbitrarily) 추출된 특징점은 인식률을 저하시키는 문제를 발생시킨다. 특히 도시환경에서 촬영된 영상의 특징점을 추출할 때 이러한 문제 현상들이 빈번하게 발생한다. 본 논문에서는 이러한 문제를 해결하고자 multi-view 영상에서 건물의 homography를 기반으로 정확히 정합된 특징점인 inlier만을 선택하는 알고리즘을 제안한다. Inlier로 분류된 특징점들은 건물 인식 시스템을 구성하기 위해 사용되고 조명 변화에 민감한 영역에서 임의로 추출된 특징점들은 영역 기반 특징을 추출하여 건물 인식 시스템의 인식률을 높인다. 또한 이를 이용하여 인식하고자 하는 건물과의 상관관계가 적은 잉여 영상들을 DB에서 제거하는 방법도 제안한다. 실험을 통하여 제안하는 기법의 우수성을 보였다.

  • PDF

컴포넌트 검색에서 가우시안 함수를 이용한 사용자 피드백의 개선 (Improvement of User Feedback using Gaussian Function in Component Retrieval)

  • 한정수;김귀정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.389-392
    • /
    • 2005
  • 본 논문의 컴포넌트 검색 시스템의 성능을 향상시키기 위해 사용자 피드백을 효율적으로 수행하는 방법을 제안하고자 한다. 기존의 퍼지 기법이 적용된 삼각형 모양의 퍼지화 함수는 컴포넌트를 선택할 때마다 매번 4가지 경우의 그래프를 재구성해야 하는 어려움이 있다. 본 연구에서는 이러한 피드백의 단점을 극복하기 위하여 검색된 컴포넌트의 선택여부에 따라 동일한 함수이지만 학습률을 달리할 수 있는 가우시안 함수를 이용한 상호작용 함수를 제안한다. 가우시안 함수를 피드백 함수로 채택 시 함수의 파라메타에 따른 검색 성능을 비교하고, 이를 토대로 가장 효율적인 동적 상호작용 함수를 제안하여 소수의 컴포넌트로도 좋은 검색 결과가 가능한 검색 시스템을 구축하고자 한다.

  • PDF

음성처리에서 온라인 오류역전파 알고리즘의 학습속도 향상방법 (A Method on the Learning Speed Improvement of the Online Error Backpropagation Algorithm in Speech Processing)

  • 이태승;이백영;황병원
    • 한국음향학회지
    • /
    • 제21권5호
    • /
    • pp.430-437
    • /
    • 2002
  • 다층신경망 (MLP: multilayer perceptron)은 다른 패턴인식 방법에 비해 여러 가지 훌륭한 특성을 가지고 있어 음성인식 및 화자인식 영역에서 폭넓게 사용되고 있다. 그러나 다층신경망의 학습에 일반적으로 사용되는 오류역전파 (EBP: error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있으며, 이는 화자인식이나 화자적응과 같이 실시간 처리를 요구하는 응용에서 상당한 제약으로 작용한다. 패턴인식에 사용되는 학습데이터는 풍부한 중복특성을 내포하고 있으므로 패턴마다 다층신경망의 내부변수를 갱신하는 온라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 오류역전파 알고리즘에서는 가중치 갱신 시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 응용에서 상당한 속도개선을 얻을 수 있지만, 학습률이 고정된 상태에서는 학습이 진행됨에 따라 학습에 기여하는 패턴영역이 달라지는 현상에 효과적으로 대응하지 못하는 문제가 있다. 이 문제에 대해 본 논문에서는 패턴의 기여도에 따라 가변 하는 학습률과 학습에 기여하는 패턴만을 학습에 반영하는 패턴별 가변 학습률 및 학습생략 (COIL: Changing rate and Omitting patterns in Instant Learning)방법을 제안한다. 제안한 COIL의 성능을 입증하기 위해 화자증명과 음성인식을 실험하고 그 결과를 제시한다.

Neural Network Combination (NNC) 기법을 이용한 부분방전 패턴인식의 신뢰성 향상에 관한 연구 (A Study on the Reliability Improvement of Partial Discharge Pattern Recognition using Neural Network Combination (NNC) Method)

  • 김성일;정승용;구자윤;임윤석;구선근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.9-11
    • /
    • 2005
  • 본 연구는 GIS 진단신뢰성 향상기술 개발을 목적으로, 16개의 인위적 결함을 이용하여 부분방전 신호를 발생시키고 검출하여 그 패턴인식 확률을 높이기 위하여 신경망에 Genetic Algorithm (GA) 을 적용하였다. 이를 위하여 다음과 같은 5가지 서로 다른 신경망 모델을 선택하였다: Back Propagation (BP), Jordan-Elman Network (JEN), Principal Component Analysis (PCA), Self-Organizing Feature Map (SOFM) 및 Support Vector Machine (SVM). 이와 같이 선택된 모델에 동일한 데이터를 학습 시키고 패턴인식 확률을 비교 및 분석하였다. 실험 결과에 의하면, BP의 인식률이 가장 높고 다음으로 JEN의 인식률이 높이 나타났으며, 후자의 경우 모든 결함에 대하여 정확한 패턴분류를 한 반면에 전자의 경우 1.8% 의 분류 오차가 발생하였다. 따라서 인식률이 높은 신경망이 더 정확한 패턴분류를 보장하지 못한다는 실험적 결과를 고려 할 때, 인식률이 높은 두 개의 모델을 선정하여 각각의 출력에 일정한 가중치를 주고 합산하여 새로운 출력을 얻는 방법을 제안한다.

  • PDF

면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용 (Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice)

  • 조재훈;김동화;오성권
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.402-410
    • /
    • 2004
  • 본 논문에서는 복잡하고 비선형적인 시스템을 위하여 최적 면역 알고리즘의 개선된 클론선택에 기반을 둔 최적FNN 설계방법을 제안한다. FNN은 퍼지추론의 간략 추론과 학습방법으로는 오류역전파 알고리즘을 하였고 멤버쉽함수의 파라미터, 학습률 및 모멘텀 계수들을 선정하기 위하여 개선된 클론 선택을 사용하는 방법을 도입하였다. 제안한 알고리즘은 생체의 면역반응에 기초를 둔 면역알고리즘의 클론선택을 기본으로 분화율을 조절하여 성능을 개선하였다. 그 과정을 통하여 다양한 항체들을 생성하고 목적함수나 제한조건과 같은 항원들에 대하여 가장 높은 친화도를 가지는 항체를 최적 항체로 선택하였다. 제안된 알고리즘의 성능을 평가하기 위하여 가스로공정과 교통경로선택 공정을 사용한다.