본 논문에서는 지역적 특성을 가지는 작은 인식기(마이크로 인식기)의 모음으로 인식기를 구현하는 다중 인식기 시스템을 제안한다. 각 학습패턴에서 k개의 이웃한 학습패턴을 추출해서 학습한 인식기를 마이크로인식기라고 한다. 각 학습패턴에는 한개 이상의 마이크로 인식기를 부여한다. 본 논문에서는 선형 커널을 사용한 SVM과 RBF 커널을 사용한 SVM등 두 가지 형태의 마이크로 인식기를 사용한다. 테스트 패턴이 인가되면 테스트패턴 주변의 마이크로인식기들 중에서 성능이 가장 좋은 것 하나를 선택한 후 선택된 인식기로 최종 클래스를 결정한다. 테스트패턴 주변에 있는 학습패턴들을 인식한 결과를 성능 측정 척도로 사용한다. Elena 데이터 베이스를 사용하여 기존의 단일 인식기, 다중 인식기 결합, 다중 인식기 선택 방법들과 인식률을 비교한 결과 제안된 방법이 우수함을 알 수 있다.
퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 학습률의 설정에 따라 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 학습률로 설정하여 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 영문 명함에서 추출한 영문자들을 대상으로 실험한 결과, 기존의 ART1과 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.
최근 수년 전부터 학습(learning), 기억(memory)의 분자약리학적 기전과 치매(dementia)의 신경생리학적 원인 규명에 대한 연구가 사회적 요구에 부응하여 증가하고 있다. 이에 본 연구에서는 횐쥐를 이용하여 실험실적 건망모델을 설정하여 항치매 물질의 효력 screening을 시도하였다. 실험실적 건망모델은 다음 두 가지 방법으로 설정하였다. 첫째, Acetylcholine 길항제인 Scopolamine을 사용하여 중추신경계중 기억, 학습기전과 관련된 것으로 알려진 cholinergic신경계률 차단하여 유발한 실험적 건망모델과, 둘째, 단백질합성 저해제인 cycloheximide를 사용하여 기억, 학습경로에 관여하는 수종의 중추 단백질듈을 비선택적으로 저해하여 유발한 실험적 건망모델을 이용하여 인삼, 오미자등의 항치매 효과를 검색하고자 수동적 회피학습능, 능동적 회피학습능, 자발운동량을 측정하여 기억, 학습, 행동의 상관 관계를 고찰하였다.
본 논문은 컴포넌트 검색 시스템의 성능을 향상시키기 위해 사용자 피드백을 효율적으로 수행하는 방법을 제안하고자 한다. 기존의 퍼지 기법이 적용된 퍼지화 함수는 컴포넌트를 선택할 때마다 매번 4가지 경우의 그래프를 재구성해야 하는 어려움이 있다. 본 연구에서는 이러한 피드백의 단점을 극복하기 위하여 검색된 컴포넌트의 선택여부에 따라 동일한 함수이지만 학습률을 달리할 수 있는 가우시안 함수를 이용한 상호작용 함수를 제안한다. 가우시안 함수를 피드백 함수로 채택 시 함수의 파라메타에 따른 검색 성능을 비교하고, 이를 토대로 가장 효율적인 동적 상호작용 함수를 제안하여 효율적인 검색 시스템을 구축하고자 한다.
본 논문에서는 항공기용 터보 축 엔진의 결함 진단 알고리즘을 개발하지 위해 Support Vector Machine(SVM)과 인공신경망(ANN)을 이용하였다. SVM을 이용하여 결함 위치를 판별한 후 인공신경망이 선택적으로 학습하는 분할 학습 알고리즘(SLA)을 제안하였으며 이를 고도 변화에 따른 가스 터빈 엔진의 결함 진단에 적용하여 분류 속도 및 예측 정확률 개선 가능성을 확인하였다.
특징점 기반 건물인식 시스템에서는 강건한 특징점을 추출하는 것이 인식률 향상에 바로 직결되는 중요한 요소이다. 영상에서 특징점들이 너무 많이 추출되는 경우 인식이나 학습단계에서의 알고리즘 수행 시간을 증가시키는 원인이 된다. 또환 중요하지 않은 특징점(배경이나 가려짐 영역, 기타 객체에서 추출된 특징점)이나 조명 변화에 민감한 영역에서 임의로(arbitrarily) 추출된 특징점은 인식률을 저하시키는 문제를 발생시킨다. 특히 도시환경에서 촬영된 영상의 특징점을 추출할 때 이러한 문제 현상들이 빈번하게 발생한다. 본 논문에서는 이러한 문제를 해결하고자 multi-view 영상에서 건물의 homography를 기반으로 정확히 정합된 특징점인 inlier만을 선택하는 알고리즘을 제안한다. Inlier로 분류된 특징점들은 건물 인식 시스템을 구성하기 위해 사용되고 조명 변화에 민감한 영역에서 임의로 추출된 특징점들은 영역 기반 특징을 추출하여 건물 인식 시스템의 인식률을 높인다. 또한 이를 이용하여 인식하고자 하는 건물과의 상관관계가 적은 잉여 영상들을 DB에서 제거하는 방법도 제안한다. 실험을 통하여 제안하는 기법의 우수성을 보였다.
본 논문의 컴포넌트 검색 시스템의 성능을 향상시키기 위해 사용자 피드백을 효율적으로 수행하는 방법을 제안하고자 한다. 기존의 퍼지 기법이 적용된 삼각형 모양의 퍼지화 함수는 컴포넌트를 선택할 때마다 매번 4가지 경우의 그래프를 재구성해야 하는 어려움이 있다. 본 연구에서는 이러한 피드백의 단점을 극복하기 위하여 검색된 컴포넌트의 선택여부에 따라 동일한 함수이지만 학습률을 달리할 수 있는 가우시안 함수를 이용한 상호작용 함수를 제안한다. 가우시안 함수를 피드백 함수로 채택 시 함수의 파라메타에 따른 검색 성능을 비교하고, 이를 토대로 가장 효율적인 동적 상호작용 함수를 제안하여 소수의 컴포넌트로도 좋은 검색 결과가 가능한 검색 시스템을 구축하고자 한다.
다층신경망 (MLP: multilayer perceptron)은 다른 패턴인식 방법에 비해 여러 가지 훌륭한 특성을 가지고 있어 음성인식 및 화자인식 영역에서 폭넓게 사용되고 있다. 그러나 다층신경망의 학습에 일반적으로 사용되는 오류역전파 (EBP: error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있으며, 이는 화자인식이나 화자적응과 같이 실시간 처리를 요구하는 응용에서 상당한 제약으로 작용한다. 패턴인식에 사용되는 학습데이터는 풍부한 중복특성을 내포하고 있으므로 패턴마다 다층신경망의 내부변수를 갱신하는 온라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 오류역전파 알고리즘에서는 가중치 갱신 시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 응용에서 상당한 속도개선을 얻을 수 있지만, 학습률이 고정된 상태에서는 학습이 진행됨에 따라 학습에 기여하는 패턴영역이 달라지는 현상에 효과적으로 대응하지 못하는 문제가 있다. 이 문제에 대해 본 논문에서는 패턴의 기여도에 따라 가변 하는 학습률과 학습에 기여하는 패턴만을 학습에 반영하는 패턴별 가변 학습률 및 학습생략 (COIL: Changing rate and Omitting patterns in Instant Learning)방법을 제안한다. 제안한 COIL의 성능을 입증하기 위해 화자증명과 음성인식을 실험하고 그 결과를 제시한다.
본 연구는 GIS 진단신뢰성 향상기술 개발을 목적으로, 16개의 인위적 결함을 이용하여 부분방전 신호를 발생시키고 검출하여 그 패턴인식 확률을 높이기 위하여 신경망에 Genetic Algorithm (GA) 을 적용하였다. 이를 위하여 다음과 같은 5가지 서로 다른 신경망 모델을 선택하였다: Back Propagation (BP), Jordan-Elman Network (JEN), Principal Component Analysis (PCA), Self-Organizing Feature Map (SOFM) 및 Support Vector Machine (SVM). 이와 같이 선택된 모델에 동일한 데이터를 학습 시키고 패턴인식 확률을 비교 및 분석하였다. 실험 결과에 의하면, BP의 인식률이 가장 높고 다음으로 JEN의 인식률이 높이 나타났으며, 후자의 경우 모든 결함에 대하여 정확한 패턴분류를 한 반면에 전자의 경우 1.8% 의 분류 오차가 발생하였다. 따라서 인식률이 높은 신경망이 더 정확한 패턴분류를 보장하지 못한다는 실험적 결과를 고려 할 때, 인식률이 높은 두 개의 모델을 선정하여 각각의 출력에 일정한 가중치를 주고 합산하여 새로운 출력을 얻는 방법을 제안한다.
본 논문에서는 복잡하고 비선형적인 시스템을 위하여 최적 면역 알고리즘의 개선된 클론선택에 기반을 둔 최적FNN 설계방법을 제안한다. FNN은 퍼지추론의 간략 추론과 학습방법으로는 오류역전파 알고리즘을 하였고 멤버쉽함수의 파라미터, 학습률 및 모멘텀 계수들을 선정하기 위하여 개선된 클론 선택을 사용하는 방법을 도입하였다. 제안한 알고리즘은 생체의 면역반응에 기초를 둔 면역알고리즘의 클론선택을 기본으로 분화율을 조절하여 성능을 개선하였다. 그 과정을 통하여 다양한 항체들을 생성하고 목적함수나 제한조건과 같은 항원들에 대하여 가장 높은 친화도를 가지는 항체를 최적 항체로 선택하였다. 제안된 알고리즘의 성능을 평가하기 위하여 가스로공정과 교통경로선택 공정을 사용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.