• Title/Summary/Keyword: 선체 전단력

Search Result 8, Processing Time 0.019 seconds

Whipping analysis of hull girders considering slamming impact loads (슬래밍 충격하중을 고려한 선체 휘핑 해석)

  • Seong-Whan Park;Keun-Bae Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • Elastic dynamic responses analysis program for ship hulls considering slamming impact loads due to the voyage in large amplitude waves is developed. Ship hull structures are modeled by a thin-walled beam model in order to consider effects of shear deformation. The momentum slamming theory is used to derive nonlinear hydrodynamic forces considering intersection between wave particles and ship section. For the validation of the developed computer program, motions of a V-shaped simple section model and S-175 standard container model are calculated and analyzed. In each numerical example, time histories of relative displacement, velocity and vertical bending moment of a ship section are derived, considering the effect of slamming impacts in various wave conditions.ures near the free surface as well as the wake of the hydrofoil.

  • PDF

On The Development of Design Wave Loads in Classification Rules(I) (선급 강선규칙의 설계 파랑하중 산식 개발(I))

  • J.Y. Song;Y.K. Chon;T.B. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.112-126
    • /
    • 1993
  • In this paper, unified requirements of IACS on longitudinal strength of ships are investigated using nonlinear wave loads analyses under short term irregular waves. Also, analyses on IACS wave data were carried out for the purpose of presenting the guideline for future use. While keeping theoretical consistensy, the rule requirements for horizontal shear force, bending moment and torsional moment are newly proposed for the ships of large deck openings bases on the calculation results for 17 sample ships. The requirements for side shell hydrodynamic pressure are also presented. All the calculated results are compared with other Societies and present KR rules. These formula will be checked when corresponding requirements of structural scantling are determined.

  • PDF

Analysis on the Structual Response of Ship Structures Subjected to Slamming Impact (Slamming충격으로 인한 선체의 구조적 응답해석)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.67-74
    • /
    • 1985
  • This paper describes a method for evaluating the vertical hull girder vibratory response associated with slamming of a ship at sea. The ship hull is considered as a nonuniform beam divided into twenty equal sections. Impact forces and structural parameters are used as input quantities on the computer (PRIME 550-II) to obtain the hull girder response in terms of relative displacements, accelerations, bending moments, shear forces, and stresses. Sample calculations are made on a MARINER-Class hull form using first three modes and again using first ten modes and again using first ten modes. The computed response is compared with Antonides's result in order to evaluate the adequacy of the method employed. It is believed that the method is another noticeable one to obtain whipping stresses of a ship to a seaway.

  • PDF

Sensitivity Analysis of Coupled Horizontal and Torsional Vibration of Hull Girder (선체 저차 수평.비틂 연성 고유진동 감도해석)

  • Dae-Seung Cho;Sa-Soo Kim;Doo-Yong Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-113
    • /
    • 1999
  • This paper resents a prediction method of natural frequencies of coupled horizontal and torsional vibration of hull girder based on design sensitivity analysis in case of the changes of system parameters. The sensitivity analysis is formulated applying the direct differentiation method and transfer matrix method. In the analysis, warping, shear deformation due to torsion and the continuity condition at the connected part of open and closed hull section are considered. Using the presented method. The affection for natural frequencies by the change of system parameters, especially cargo and added mass and their centers, is numerically investigated for a real large container carrier.

  • PDF

A study on hull girder shear strength in bulk carriers for CSR and Harmonized CSR (CSR-BC와 Harmonized CSR-BC의 선체 전단 응력에 대한 비교 고찰)

  • Park, Jong Min;Lee, Kyu Ho;Lee, Sang Bok;Shin, Sung-Kwang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.46-49
    • /
    • 2015
  • Common Structural Rules (CSR) about bulk carriers and double-hull oil tankers of International Association of Classification Societies (IACS) has been applied to ships contracted for construction since April 2006. By unifying each society's rules, the difference of opinion in the between shipyard and ship owners, classification was reduced, and CSR has been evaluated by rules the safety structure more enhanced. However, The CSR about the bulk carriers and double hull oil tankers, important design content standards, such as the local scantling calculation, static/dynamic load case and corrosion margin and etc., are different. Therefore in order to combine the CSR, the Harmonized CSR for bulk carriers and double hull oil tankers (H-CSR) was issued on 1, January, 2014, and will be apply to ships contracted for construction after 1st July 2015. It is necessary to verify the H-CSR to optimize the structural arrangement because effective date is not far off. In this study, we compared the impact by rule change for the hull girder shear strength of bulk carriers between CSR and H-CSR in respect of the yielding and buckling strength.

  • PDF

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.515-522
    • /
    • 2005
  • The ship plating is generally subjected to. combined in-plane load and lateral pressure loads, In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to. water pressure and cargo. These load components are nat always applied simultaneously, but mare than one can normally exist and interact. Hence, far mare rational and safe design of ship structures, it is af crucial importance to. better understand the interaction relationship af the buckling and ultimate strength far ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except far the impact load due to. slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to. the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Jun-Kyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull ginder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are inverstigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

The Development on the Buckling Strength Estimation Formula of Plate Members in Consideration of Inplane Tension(I) (면내인장력을 고려한 판부재의 좌굴강도 평가식 개발 (I))

  • Ham, Juh H.;Kim, Ul N.;Chung, Yun S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 1996
  • Ship structure basically consists of plate members and it's overall strength depends an the stiffness and strength of each plate member. The buckling strength of plate is one of the most important design criteria when we investigate the structural intergraty. Therefore, it is necessary to surly reasonable buckling formula in order to carry out a more efficient and reliable design. In the present study, the buckling design formula of plate panels under combined loads(inplane compression, tension and shear) is obtained on the theoretical solution or reference paper. This formula is compared with the existing theoretical solution, other author's formula[1], design codes of LR and results which are obtained by numerical analysis. It has a good correlation with numerical analysis results or theoretical ones. When we evaluate buckling strength of plate panels, this formula can be presented with reasonable accuracy.

  • PDF