• Title/Summary/Keyword: 선체 운동

Search Result 172, Processing Time 0.021 seconds

The Performance Analysis of Wireless links for the Ship Motion in Maritime Wireleless Network (해상 무선통신 네트워크에서 선체운동에 따른 무선링크 성능 분석 연구)

  • Yang, Seung-Chur;Jeong, Jong-Min;Lee, Sung-Ho;Kim, Jong-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.607-608
    • /
    • 2013
  • 무선 애드훅 네트워크에서는 무선링크의 성능을 표현하는 다양한 품질 척도가 있다. 그것은 노드가 움직임이 없는 상태에서 주변 무선 상태를 반영한다. 하지만 해상 환경에서는 선박의 이동성 뿐만 아니라 바람과 파고에 의해 선박이 움직이는 특성이 있다. 따라서 선박에 위치한 안테나의 흔들림을 유발하여 신호의 수신을 불안정하게 만든다. 본 논문은 선체운동에 따른 무선 링크 성능을 분석한다. 이를 위해 자이로 센서를 이용하여 서로 다른 해상 환경에서 선체운동을 측정 및 분석하고, 하드웨어 및 소프트웨어에 의한 무선 링크 안정화 방안을 제시한다.

  • PDF

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

Characteristics on the Motion Response of a Catamaran Power Yacht (카타마란형 파워요트의 운동응답 특성에 관한 연구)

  • Gim, Ok-Sok;Oh, Woo-Jun;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.447-452
    • /
    • 2010
  • A very good seakeeping vessel is able to operate effectively even in high sea states and also the passengers and the cargos are ensured in good conditions. The motions of a high speed boats are highly influenced by speed and dynamic forces even in encounter frequencies so that the assessment of seakeeping ability of the design craft in an early stage needs to be calculated for all three motions and for all ralative wave headings. In this paper, it concludes that RAO and RMS values of the catamaran's 3 motion are calculated according as the variation of Beafort scales and ship's speed. The ship motion response of the catamaran based on the RAO and RMS by encounter angles and speed was calculated.

A General Formula for Calculating the Value of Transverse Moment of Inertia by Observing the Roll Motion of Ships (횡요상태 관측에 의한 선체 횡관성모멘트 값의 도출을 위한 일반식)

  • Choi, Soon-Man
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.538-542
    • /
    • 2015
  • The transverse moment of inertia is an indispensable factor in analyzing the roll motion characteristics of ships and the calculating method needs to be based on the more reasonable theories when deciding the value as the results and reliability of analysis could be much affected by the correctness. However, the mass distribution and shape of hulls are quite complicated and give much difficulties in case of calculating the value directly from the ship design data, furthermore even acquiring the detailed design data for calculation is almost impossible. Therefore some simpler ways are practically adopted in the assumption that the gyradius of roll moment can be decided by a given ratio and hull width. It is well known that the responses of the free roll decay are varied according to the value of roll moment in view of roll period and amplitude decay ratio, so that the general formula to get the moment value can be derived also from the observation of roll decay responses. This study presents how the roll period and decay ratio are interrelated each other from the roll motion characteristics with suggesting a general formula to be able to calculate roll moment from it. Finally, the obtained general formula has been applied to a ship data to check the resultant characteristics through analyzing graphs and showed that the roll moment becomes more accurate when rolling period and decay ratio are considered together in calculation.

Attitude Control of Surface Ship using fuzzy inference technique (퍼지추론 기법을 이용한 선체자세 제어)

  • 김희정;김용기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.149-152
    • /
    • 2001
  • 선박이 해상에서 운항시, 선체는 파도에 의해 심하게 동요되기 때문에 승선감과 안전성이 저하된다. 따라서 선박의 안전항해, 쾌적한 승선감, 구조적인 안전 보장을 위한 선체제어를 위한 필요성이 증대되어 왔다. 기존의 PID 제어기법 등은 정상편차가 적어 과도응답의 문제점 및 오차누적의 문제점이 있고, 퍼지제어 기법은 최적화가 어렵다는 단점을 가진다. 본 논문에서는 퍼지추론 기법을 이용한 선체자세 제어기법으로 운동체에 관한 전문가의 지식과 경험을 바탕으로 퍼지집합과 퍼지규칙을 설정하고 설계된 퍼지 추론을 통해 현재의 운동상황을 판단함으로써 효과적인 최적화와 자세계산을 수행할 수 있다. 본 논문에서는 퍼지추론을 이용한 자세제어 알고리즘을 제안하고 실시간 시뮬레이션을 통하여 시험한다.

  • PDF

Development of a Digital Motion Measuring System in a Real Seaway (실선 운동계측 시스템 개발)

  • Sa-Young Hong;Jong-Sik Lee;Seok-Won Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.125-130
    • /
    • 1992
  • A digital 6-dof motion measuring system is developed using 7 accelerometers following Miles'[1] method. A snoic wave height gauge is also developed to measure the relative wave height at the foremost end of the ship. By combining the time series of both 6-dof motions and relative wave height, we can estimate the time series of real sea wave. Results of model tests shows the validity of the developed system.

  • PDF

A Study on the Evaluation of Cargo Securing Safety for Car ferry Ships Using Wave Height Information (해상 파고 정보를 활용한 카페리 선박의 고박안전성 평가에 관한 연구)

  • Yu, Yong-Ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.457-464
    • /
    • 2021
  • Cargo securing safety, which is one factor for the safe operation of car ferry ships, has been applied since 2015 and evaluated by comparing the hull motion and securing load capacity generated by waves. To ensure the safe operation of the 3700 ton class car ferry, it is important to analyze the hull acceleration motion based on the sea wave information of the navigation area to determine the cargo securing load that can prevent the movement of cargo. In this study, the meteorological information of three wave buoys installed in Busan and Jeju area was analyzed for the past 5 years. In addition, the hull acceleration was measured in actual sea conditions and compared to that of numerical simulations. Under the condition of a significant wave height of 2.5 m from Feb to Mar, except typhoon seasons, the lateral acceleration was observed to be 1.5 m/s2 in real ship measuring and 1.8 m/s2 in numerical calculation. It was analyzed to be less than 40% under general weather conditions compared to the high wave warning using an approximate formula for estimating the hull motion by wave height. The cargo securing safety proposed in this study will be widely used based on the actual measuring acceleration with the sea wave height.

Approximate Analysis of Shock Response for Ship Hull Girder (선체거더 충격응답의 근사해석)

  • Song, C.T.;Park, B.W.;An, C.W.;Cho, Y.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.75-84
    • /
    • 1996
  • The structural response of naval surface ships subjected to underwater shock loadings is a very important problem in viewpoint ship survivability. In practice, among others the case of noncontact underwater explosions is the only one shock loading considered in designing naval surface ships to resist underwater explosions. In orator to efficiently design naval surface ships and their equipment to resist such shock loadings it seems necessary to prepare theoretical analysis tools and/or empirical design criteria which can predict the three dimensional transmission of shock waves. This paper describes a simplified method to analyse shock responses for ship hull girder, which uses a loading function to approximate the shock loadings on ship structures due to noncontact underwater explosions. A couple of examples to apply this method are provided.

  • PDF

Analysis of Dynamic Positioning System Based on Self-Tuning Control (자기동조 제어기를 이용한 위치확보 시스템에 관한 연구)

  • Sang-M.,Lee;Pan-M.,Lee;Sa-Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.32-40
    • /
    • 1989
  • Dynamic ship positioning(DP) system is used to keep the position and heading of a ship, or a floating platform, above a pre-selected site on the seabed by using thrusters. This paper presents a control system based on filtering technique and optimal control theory. The planar motions of a vessel are assumed to consist of low frequency(LF) component and high frequency(HF) one. The former is mainly due to thrusters, current, wind and second order wave forces, while the latter is mainly due to first order oscillatory component of the wave force. Furthermore position measurement signals include the noise. By means of self-tuning filter and Kalman filter techniques, LF motion estimates and HF ones are seperately achieved from the position measurements of the vessel. The estimated LF motions are used as input to the feedback loops. The total thruster power is minimized using the Linear Quadratic Gaussian control theory. The performance of the vessel with the DP system is investigated by computer simulation.

  • PDF