• Title/Summary/Keyword: 선체변형

Search Result 103, Processing Time 0.019 seconds

Simulation of Plate Deformation by Triangle Heating Process (삼각가열에 의한 판 변형의 시뮬레이션)

  • Chang-Doo Jang;Dae-Eun Ko;Sung-Choon Moon;Yong-Rok Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.66-74
    • /
    • 2001
  • Plate bending process is indispensible in shipbuilding. The process includes press bending process and heating process. Especially the heating process is carried out exclusively by skillful workers. Many researches have been made to automate the heating process. This study was carried out as a fundamental study to develop a efficient analysis method for triangle heating and focused on clarifying the deformation characteristics of plate by triangle heating and essential elements effect on the deformation. In this paper, we proposed an analysis model for thermal-elastic-plastic analysis and simulated the deformation by triangle heating using ANSYS based on the experimental results of Jang et al.(2001). Also, we showed the deformation characteristics more clearly by comparing the deformation due to triangle heating and line heating in case that the total heat input is same. Finally, we investigated the change characteristics of deformation elements according to the volumetric heat input.

  • PDF

On the Weld-Induced Deformation Control of Ship's Thin Plate Block (II) (선체 박판구조의 용접변형 제어에 관한 연구(II))

  • Lee, Joo-Sung;Kim, Cheul-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.504-508
    • /
    • 2007
  • In the case of thin plate blocks, buckling deformation due to longitudinal shrinkage is the most important weld-induced deformation. This paper is concerned with developing the formula to predict the longitudinal shrinkage due to welding, in which mechanical tension effect in welding direction is accounted for. For this purpose, bead on plate welding test has been carried out for the 27 thin plate specimens with varying welding conditions and magnitude of tensile load. Empirical formula of predicting the longitudinal shrinkage has been derived based on the results of welding test, in which effect of mechanical tension is included. The derived formula can be usefully used in predicting the level of tensile load to reduce the longitudinal shrinkage.

A Study on the Elasto-Plasticity Behaviour of a Ship's Plate under Thrust According to Boundary Condition (압축력을 받는 선체판의 경계조건에 따른 탄소성거동에 관한 연구)

  • Ko Jae-Yong;Park Joo-Shin;Park Sung-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.29-33
    • /
    • 2004
  • Design of general steel structure had applied to achieve elastic designing concept so far. Because elastic design supposes that whole structure complies with elasticity formula so that achieve via allowable stress of material. It is concept that calculate stress distribution of construction about action external load and estimate load when the maximum stress reaches equally with allowable stress that is established by maximum safety load of the structure. But, absence that compose actuality structure by deal with external load increase small success surrender and structure hardness falls and structure in limited state finally on the whole as showing complicated process by interference between collapse and buckling under compression. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

A Study on the Local Strength Structural Analysis for Steel Yacht (강선요트의 국부강도 구조해석에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.155-159
    • /
    • 2005
  • Analysis target ship is not introduced yet in domestic as steel yacht that is getting into the spotlight by leisure life in Australia or Japan. Sailing yacht or Yacht for leisure time made of FRP into controlling power fare mainly and the design and made of latest fishing boat and something of domestic is consisting mainly. To need investigated for concept is various kinds overall strength as that use mainly steel wire material structurally of steel yacht by small crafts about Longi strength, Transe strength portion even of design safety factor at subject to do Rule's allowable stress enough stable structure accomplish. But it is assessment of part intensity that become refer to most in small size ship.

  • PDF

잠수함의 공조

  • 김영일
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.30 no.4
    • /
    • pp.56-60
    • /
    • 2001
  • 경험에 의하면 앞에서 언급한 장비의 사용, 규율, 규제된 용제의 사용, 기름 페인트 사용의 억제, 그리고 엄격한 페인트 과정을 따르는 것에 의해 잠수함내의 탄화수소 농도를 100만분의 1 또는 2 수준으로 유지할 수 있다. 예방책으로는 세심한 관찰, 선체내로 들여오는 모든 물질의 기록 그리고 규제된 물질의 사용 시간, 장소 및 양의 제어이다. 이러한 점들은 잠수함 내부를 안전하고 건강한 환경으로 설계하기 위하여 활용될 수 있는 자료들이다. 잠수함 내의 공기질은 적외선 분광 광도계, 질량 분광계, 상자성(paramagnetics), 열전도율, 광이온화 그리고 열량 검사에 의해 분석될 수 있다. 분석된 결과는 과거의 데이터와 비교되어 활성탄충의 교체등을 포함하여 유지 관리의 자료로 활용된다. 이러한 원리를 이용한 다양한 계측기가 선체 내의 대기 상태를 분석하기 위하여 사용된다. 중앙 대기 측정기, 추적 가스 분석기, 수소 탐지기, 이동형 대기 모니터, 이동형 산소 분석기, 탄광 안전 지시계, 열량 분석관, 탐지 펌프 시험기가 사용된다. 이러한 계측기는 잠수 전 또는 후에 사용된다. 계측기는 화재 발생시 영향을 받지 않은 공간 또는 냉매가 충전되는 장소에 사용된다. 오늘날 여러 종류의 특별한 잠수함이 존재한다. 정찰 업무를 통해 세계 평화를 유지하고 특별한 임무를 수행하는 것보다 덜 복잡한 목적을 지닌 잠수함도 있다. 그러나 선원들이 안전한 내부 환경 속에서 바다 속을 항해하고 계속 그 응용 범위를 확장하기 위하여 앞에서 언급한 장비들 또는 그 변형들이 사용되어야 한다.

  • PDF

The Introduction of Shaft Alignment Calculation for very Large Container Vessel (초대형 콘테이너선의 축계정렬 계산 사례 소개)

  • Kang Dong Chun;Park Kun Woo;Kim Kyoung Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, it is much more required to approach the accurate shaft alignment analysis according to the tendency of active showing in large container vessel and that of the heavy weight of propeller in connection with it. Shaft alignment calculation lies upon how the pressure apply on bearings properly in operation of main engine and how the stress of shaft puts within that of limit of bearing material and how the movement of shaft is prospected owing to propeller forces and moments. Therefore, we have conducted the shaft alignment calculation of very large container vessel considering the deformation of hull structure and the propeller forces and moments and the static and dynamic condition of shaft. The calculation results show the pressure distribution of aft bush and the movement of shaft in bearing. The shaft alignment calculation helps the stable application of shaft alignment, which was proved in sea trial.

  • PDF

A Study on the Collapse Strength Characteristics of Ship Bottom Plating Subject to Slamming Induced Impact Lateral Pressure Loads (선저슬래밍 충격횡압력을 받는 선체 판부재의 붕괴강도 특성에 관한 연구)

  • Jeom-Kee Park;Jang-Yang Chung;Young-Min Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.77-93
    • /
    • 1999
  • The twin aims of the paper are to investigate the collapse strength characteristics of ship plating subject to impact pressure loads and to develop a simple structural design formula considering impact load effects. The general purpose nonlinear finite element program STARDYNE together with existing experimental results is used to investigate the collapse behavior of plating under impact pressure loads. The rigid plastic theory taking into account large deflection effects is applied to the development of the design formulation. In the theoretical method, the collapse strength formulation for plating subject to hydrostatic pressure is first derived using the rigid plastic theory. By including the strain rate erects in the formulation it can be applied to impact pressure problems. As illustrative examples, the collapse behavior of steel unstiffened plates and aluminum alloy stiffened panels subject to impact pressure loads is analyzed.

  • PDF

A Study for the Measurement of Global Loads on Ship Structure Using Fiber Optic Sensors (광섬유 센서를 이용한 선체 구조의 Global 하중 추정에 관한 연구)

  • Kim, Myung-Hyun;Kim, Young-Jae;Kang, Sung-Won;Oh, Min-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • Ships and offshore structures are exposed to wave and engine excitation loadings during navigation and cargo/ballasting operations. These excessive loads may cause damages to hull and may result loss of life the ship. Therefore, it is important to develop a system that allow accurate measurements of global hull loads. The objective of the study is developing a fiber optic monitoring system that is capable of monitoring, recording and warning of the vessel performance. A method for measurement of global loads on a vessel, using strain measurements from a network of fiber optic strain sensors and extensive finite-element analyses(FEA) with idealistic load cases, is presented. The method has been successfully validated on the idealized ship structure model with strain sensors.

Estimation of buckling and collapse behaviour for continuous stiffened plate under combined transverse axial compression and lateral pressure (조합하중을 받는 연속보강판의 좌굴 및 붕괴거동 평가)

  • Park, Joo-Shin;Choi, Joung-Hwan;Hong, Kwan-Young;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Estimation of the buckling and ultimate strength of a continuous stiffened plate subjected to combined transverse compression and lateral pressure is of high importance to ensure the safety of ship structures, particularly for the bottom plating under a deep draft condition For example, bottom plating of bulk carriers is subjected to transverse thrust caused by the bending of double bottom structure and the direct action of pressure on the side shells. Most of experimental tests, theoretical approach and numerical researches have been performed on the buckling and ultimate strength behaviour of plates or stiffened plates under combined compression and lateral pressure. With regard to stiffened panels, however, most of studies have been concerned with the load conditions of combined longitudinal thrust and lateral pressure, while fewer studies have been performed for the combined transverse thrust and lateral pressure. In addition, the previous researches are mainly concerned with an isolated rectangular plate simply supported along the all edges, whereas actual ship plating is continuous across the transverse frames and heavy girders. In the present paper, a series of elastoplastic large deflection FEA on a continuous stiffened plate is performed and then clarify the characteristic of collapse mode and explain the effect of transverse compression.

An Experimental Study of Characteristics of Plate Deformation by Heating Process (열간가공에 의한 판의 변형특성에 관한 실험적 연구)

  • Chang-Doo Jang;Dae-Eun Ko;Byeong-Il Kim;Jeong-Ung Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.62-70
    • /
    • 2001
  • As the ship hull is a compound-curved structure, plate bending process is indispensible. The process includes press bending process for forming major 1st curvature and heating process for forming the rest curvature. Especially the heating process that is above 50 percents of entire bending work is carried out exclusively by skillful workers. Many researches have been made to automate the heating process but most of these are about line heating process and researches for triangle heating process are rare. This study is a fundamental study to develop a efficient analysis method for triangle heating and focused on clarifying the deformation characteristics of plate by triangle heating. In this paper, we carried out heating experiments and analysed the deformation characteristics of plate to explain the deformation characteristics of plates rationally by showing the phase transformed high temperature region. Also we investigated the heating effect on the hull material properties by mechanical tests.

  • PDF