• Title/Summary/Keyword: 선박운동

Search Result 412, Processing Time 0.03 seconds

Approximate Solution of Vertical Wave Board Oscillating in Submerged Condition and Its Design Application (수직 평판 요소의 수중동요 근사해와 설계 적용)

  • Oh, Jungkeun;Kim, Ju-Yeol;Kim, Hyochul;Kwon, Jongho;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.527-534
    • /
    • 2018
  • The segment of the piston type wave board has been expressed as a submerged vertical line segment in the two dimensional wave flume. Either end of vertical line segment representing wave board could be located in fluid domain from free surface to the bottom of the flume. Naturally the segment could be extended from the bottom to the free surface of the flume. It is assumed that the piston motion of the wave board could be defined by the sinusoidal oscillation in horizontal direction. Simplified analytic solution of the submerged segment of wave board has been derived through the first order perturbation method in water of finite depth. The analytic solution has been utilized in expressing the wave generated by the piston type wave board installed on the upper or lower half of the flume. The wave form derived by the analytic solution have been compared with the wave profile obtained through the CFD calculation for the either of the above cases. It is appeared that the wave length and the wave height are coincided each other between analytic solution and CFD calculation. However the wave form obtained by CFD calculations are more closer to real wave form than those from analytic calculation. It is appeared that the linear solutions could be not only superposed by segment but also integrated by finite elements without limitation. Finally it is proven that the wave generated by the oscillation of flap type wave board could be derived by integrating the wave generated by the sinusoidal motion of the finite segment of the piston type wave board.

A Study on the Manoeuvrability as Function of Stern Hull Form in Shallow Water (선미형상을 고려한 천수역에서의 조종성능에 관한 연구)

  • Lee, Sungwook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.552-557
    • /
    • 2015
  • A numerical simulation studies were performed to investigate a manoeuvring characteristics as function of stern hull form with the mathematical model. In order to consider the effect of the stern hull form and obtain the manoeuvring characteristics, a parameter($C_{wa}$) which is aft. water plane area coefficient is modified. Because modifying $C_{wa}$(${\pm}2%$) means that the stern hull form is modified to V-type or U-type, the numerical simulation was performed with this modified $C_{wa}$. A changing trend for the manoeuvring characteristics not only in deep water but also in shallow water such as directional stability, turning and zig-zag was investigated and presented as the results. Present study showed that the manoeuvrability in shallow water largely changed when the draught and water depth ratio(=d/H) become 0.5, and the stern hull form can affect to the manoeuvrability of a vessel navigating in restricted water depth. In addition, it showed that approaching the stern hull to U-type makes the advance and tactical diameter of turning motion large and the overshoot angle of zig-zag motions small. Otherwise, it showed approaching the stern hull form to V-type makes the advance and tactical diameter of turning motion small and the overshoot angle of zig-zag motions large in the present study.

Development of a Framework for Evaluating Time Domain Performance of a Floating Offshore Structure with Dynamic Positioning System (동적위치유지시스템을 이용하는 부유식 해양구조물의 시간대역 성능평가를 위한 프레임워크의 개발)

  • Lee, Jaeyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.718-724
    • /
    • 2017
  • Considerable efforts have been made to expand the boundaries of domestic offshore plant industries, which have focused on the construction of the structures, to the engineering field. On the other hand, time domain analysis, which is one of the most important areas in designing floating offshore plants, relies mainly on the information given by foreign companies. As an early design of the Dynamic Positioning System (DPS) is mostly conducted by several specialized companies, domestic ship builders need to spend time and money to reflect the analysis into the hull shape design. This paper presents the framework required to analyze time domain performance of floating type offshore structures, which are equipped with DPS. To easily perform time domain analysis, framework generates the required input data for the solver, and is modularized to test the control algorithm and performance of a certain DPS. The effectiveness of the developed framework was verified by a simulation with a model ship and the total time for the entire analysis work was reduced by 50% or more.

Modeling of Hot-Coil/Cassette Dynamics and Design of Cassette Wedge Angle (핫코일-카세트 동역학 모델링 및 지지경사각 설계)

  • Hong, Sup;Hong, S.W.;Hong, S.Y.;Kim, H.J.;Kim, J.H.;Park, Y.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.70-75
    • /
    • 1997
  • This paper concerns with a safe and efficient transportation method of hot-coils on cargo ship. An automatic loading and unloading system of hot-coils by cassettes, which secure the geometrically unstable cargo, hot-coil, by supporting with wedges on both sides, is considered efficient and profitable. Safety of hot-coil on cassette and subsequently safety of total cargo ship are directly affected by the wedge angle of cassette. For optimal design of the cassette wedge angle, a dynamic model of hot-coil/cassette cargo is developed with constraint of no relative motions between the coil and the cassette. Force equilibrium conditions between resultant alternating inertia forces on hot-coil due to motions of cargo ship in waves and reactions forces from cassette wedge surfaces are derived and consequently a numerical simulation code is implemented. Cassette wedge angle of 37 degree is taken as optimal by considering dynamic stability of hot-coil and strength of cassette structure. Performance of the designed cassette wedge angle is investigated by scaled bench test.

  • PDF

Estimation of External Forces and Current Variables in Sea Trial by Using the Estimation-Before-Modeling Method (모델링 전 추정기법을 이용한 조종시운전시의 외력 및 조류 변수 추정)

  • H.K. Yoon;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.30-38
    • /
    • 2001
  • The current is considered in the conventional manoeuvering equation. This equation is represented as the nonlinear state and measurement equations in which external forces and the direction and the velocity of current are augmented as that variables. The external forces are modeled as the third-order Gauss-Markov processes and the direction and the velocity of current are assumed to be constant. The augmented state variables are estimated with extended Kalman-Bucy filter and the fixed-interval smoother. While Hwang estimated motion state variables, hydrodynamic coefficients and the current variables simultaneously by using extended Kalman filter, external forces of surge, sway and yaw and the direction and the velocity of current are the only parameters to be estimated in the estimation-before-modeling method. The current variables are satisfactorily estimated in simulation process where the measurement noise is present.

  • PDF

Dynamics modeling and Estimation of Manoeuvrability for Tug-Barge Systems (예부선의 동역학 모델링 및 조종 성능 추정법 개발)

  • Yeo, Dong-Jin;Han, Seong-Hwan;Kim, Dong-Jin;Kim, Yeon-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.40-41
    • /
    • 2009
  • In general, ships are towed to keep the safe operations in harbor or channel by tug boats. Due to increase in ocean traffic, many accidents are happened in harbor or channel in these days. Therefore it is necessary to predict manoeuvrability of tug-barge system, and to assure the safety of that system. Turg-barge system is composed of tug boat, barge, and towing cable, connecting both ships. Manoeuvring equations of tug-barge system are suggested, and the scopes of model tests are discussed to establish the mathematical models for tug boats in this paper.

  • PDF

Control Effect of Hydro-kinetic Force of a Special Rudder attached Flap (플랩이 부착된 특수타의 동유체력 제어효과에 관한 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Ahn, Young-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.771-776
    • /
    • 2008
  • The main purpose in having a control surface on a ship is to control the motion of it. It is the important element to determine the maneuvering characteristics of the ship. In this paper, the measured results has been compared with each other to predict the performance characteristics of flapped rudder's 2-dimensional section at $Re=3.0{\times}10^4$ using 2-frame grey level cross correlation PIV method. The side force of the rudder could be mainly improved by the lift force at 10 degrees angle of attack and the drag force at 20 degrees angle of attack. The separation point and boundary layer could be controlled by the change of the only flap's angle at 10 degrees angle of attack.

Wave and Wave Board Motion of Hybrid Wave Maker (다기능 조파기의 조파 운동과 발생 파형)

  • Kim, Hyochul;Oh, Jungkeun;Lew, Jae-Moon;Rhee, Shin Hyung;kim, Jae Heon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.339-347
    • /
    • 2021
  • Piston type wave makers or flap type wave makers are usually adopted as a wave maker which disturbing the fluid domain with sinusoidal motion. Recently hybrid wave maker which could be operated as not only piston type and/or flap type but also swing type wave maker have been devised by utilizing the link mechanism. The wave board of hybrid wave maker has been devised to be independently controlled by the horizontal actuators on upper and lower end of the wave board. The wave board could operate as a flap type wave board when the lower hinge is in a stationary condition and the upper hinge is operated with sinusoidal motion. On the contrary, the swing type wave board could be obtained by the lower hinge is activated and the upper hinge is in a stationary condition. When both end of the wave board is activated in a synchronized condition, the wave board motion become piston motion. In addition the hybrid wave maker could enhance the piston motion with flap motion or swing motion by selecting control parameters. Various wave board motion of hybrid wave maker and relevant wave form have measured on the wave board and departed location. It is appeared that the novel hybrid wave maker could be utilized for the improvement of wave qualities in experiments.

An Experimental and Numerical Study on the Survivability of a Long Pipe-Type Buoy Structure in Waves (긴 파이프로 이뤄진 세장형 부이 구조물의 파랑 중 생존성에 관한 모형시험 및 수치해석 연구)

  • Kwon, Yong-Ju;Nam, Bo-Woo;Kim, Nam-Woo;Park, In-Bo;Kim, Sea-Moon
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.427-436
    • /
    • 2018
  • In this study, experimental and numerical analysis were performed on the survivability of a long pipe-type buoy structure in waves. The buoy structure is an articulated tower consisting of an upper structure, buoyancy module, and gravity anchor with long pipes forming the base frame. A series of experiment were performed in the ocean engineering basin of KRISO with the scaled model of 1/ 22 to evaluate the survivability of the buoy structure at West Sea in South Korea. Survival condition was considered as the wave of 50 year return period. Additional experiments were performed to investigate the effects of current and wave period. The factors considered for the evaluation of the buoy's survival were the pitch angle of the structure, anchor reaction force, and the number of submergence of the upper structure. Numerical simulations were carried out with the OrcaFlex, the commercial program for the mooring analysis, with the aim of performing mutual validation with the experimental results. Based on the evaluation, the behavior characteristics of the buoy structure were first examined according to the tidal conditions. The changes were investigated for the pitch angle and anchor reaction force at HAT and LAT conditions, and the results directly compared with those obtained from numerical simulation. Secondly, the response characteristics of the buoy structure were studied depending on the wave period and the presence of current velocity. Third, the number of submergence through video analysis was compared with the simulation results in relation to the submergence of the upper structure. Finally, the simulation results for structural responses which were not directly measured in the experiment were presented, and the structural safety discussed in the survival waves. Through a series of survivability evaluation studies, the behavior characteristics of the buoy structure were examined in survival waves. The vulnerability and utility of the buoy structure were investigated through the sensitivity studies of waves, current, and tides.

Computational Analysis on the Control of Droplet Entrained in the Exhaust from the Spray Type Scrubber system (스프레이형 스크러버의 배출가스에 포함된 액적의 제어방법에 관한 전산해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang;Koo, Seongmo
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.191-199
    • /
    • 2015
  • The SOx emission from the ship diesel engines will do a negative influence to the human health and the environment. To reduce the negative environmental effect of the SOx emission caused by the high traffic of ship movements, the SECA (SOx emission control area) has been set on several province around world to carry out the severe emissions control and to meet the emissions control standard. To cut down the SOx emission from the ships, the wet type scrubber is being used widely. In this work, we prepared a numerical model to simulate the spray type scrubber to study the motion of liquid droplets in the flow of the scrubber. For the analysis, the CFD (computational fluid dynamics) method was adopted. As a special topic of the study, we designed the wave plate type of mist eliminator to check the carry over of the uncontrolled water droplet to the exhaust. Numerical analysis is divided into two stages. At the first stage, the analysis was done on the basic scrubber without the mist eliminator, and then the second stage of analysis was done on the scrubber with the mist eliminator on several condition to check and compare with the basic scrubber. On the condition of the basic scrubber, 42.0% of the distributed water droplets were carried over to the exhaust. But by adding the designed droplet eliminator at the exhaust of the scrubber, only 3.4% of the distributed water droplets supplied to the scrubber was emitted to the atmosphere.