• Title/Summary/Keyword: 선량 검증 프로그램

Search Result 32, Processing Time 0.023 seconds

A Study on Dose Distribution Programs in Gamma Knife Stereotactic Radiosurgery (감마나이프 방사선 수술 치료계획에서 선량분포 계산 프로그램에 관한 연구)

  • 고영은;이동준;권수일
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.175-184
    • /
    • 1998
  • The dose distribution evaluation program for the stereotactic radiosurgery treatment planning system using a gamma knife has been built in order to work on PC. And this custom-made dose distribution is compared with that of commercial treatment planning program. 201 source position of a radiation unit were determined manually using a gamma knife collimator draft and geometrical coordinates. Dose evaluation algorithm was modified for our purpose from the original KULA, a commercial treatment planning program. With the composed program, dose distribution at the center of a spherical phantom, 80 mm in diameter, was evaluated into axial, coronal and sagittal image per each collimator. Along with this evaluated data, the dose distribution at a arbitrary point of inside the phantom was compared with those from KULA. Radiochromic film was set up at the center of the phantom and was irradiated by gamma knife, for the verification of dose distribution. In result, the deviation of the dose distribution from that of KULA is less than ${\pm}$3%, which is equivalent to ${\pm}$0.3 mm in 50% isodose distribution for all examined coordinates and film verification. The custom-made program, GPl is proven to be a good tool for the stereotactic radiosurgery treatment planning program.

  • PDF

Development of Dose Verification Method for In vivo Dosimetry in External Radiotherapy (방사선치료에서 투과선량을 이용한 체내선량 검증프로그램 개발)

  • Hwang, Ui-Jung;Baek, Tae Seong;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The purpose of this study is to evaluate the developed dose verification program for in vivo dosimetry based on transit dose in radiotherapy. Five intensity modulated radiotherapy (IMRT) plans of lung cancer patients were used in the irradiation of a homogeneous solid water phantom and anthropomorphic phantom. Transit dose distribution was measured using electronic portal imaging device (EPID) and used for the calculation of in vivo dose in patient. The average passing rate compared with treatment planning system based on a gamma index with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 95% for the in vivo dose with the homogeneous phantom, but was reduced to 81.8% for the in vivo dose with the anthropomorphic phantom. This feasibility study suggested that transit dose-based in vivo dosimetry can provide information about the actual dose delivery to patients in the treatment room.

고선량율 근접치료에서 기존의 필름 방법과 CT 재구성 방법의 정확성 비교 연구

  • 장지나;서태석;허순녕;윤세철;김회남;이형구;최보영
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.58-58
    • /
    • 2003
  • 목적 : 본 연구에서는 C-arm과 CT에 사용 가능한 자궁경부암용 팬톰을 개발하고 이를 이용하여 기존의 필름 방법에 기반한 위치 확인 방법과 CT 재구성 방법의 정확성을 비교 연구하고자 한다. 정확성이 검증된 후에는 두 방법의 장점을 이용하기 위해 CT로 재구성된 좌표를 필름의 좌표로 변환시켜 현재 사용되고 있는 필름에 기반한 근접 치료 계획 시행에 도움을 주고자 한다. 방법 : 자체 제작한 자궁경부암용 팬톰은 인체 등가 물질인 물과 아크릴을 사용하였고, 크게 localizer 부분과 팬톰 부분으로 구성되어 있다. 또한, 실제 자궁경부암 환자의 임상적인 구조를 모사하여 제작하였다. 자궁경부암 치료시 중요 장기인 방광과 직장을 구와 원기둥으로 설계하였고, 고선량율 applicator는 아크릴 판의 흠으로 고정시켜 제작하였기 때문에 CT 촬영시 applicator를 제거한 영상에서도 applicator의 구조가 정확하게 묘사될 수 있도록 제작하였다. 두 시스템에서 재구성된 좌표를 비교하기 위해 각각의 시스템에서의 얻은 재구성 좌표와 팬톰 자체의 localizer와 재구성 알고리즘을 바탕으로 개발된 프로그램을 이용하여 얻은 좌표로 두 재구성 좌표의 비교 연구를 수행하였다. 정확성이 검증되고 장기의 정보가 담긴 CT의 좌표는 자체 개발된 프로그램으로 2 차원의 필름 좌표로 변환되었다. 본 연구에 사용된 모든 프로그램은 ILD 5.5를 사용하여 개발되었다. 결과 : 두 시스템의 좌표 비교 결과 x, y 축은 차이가 2mm 이내로 비교적 정확한 실험 결과를 얻을 수 있었고, z 축의 경우 CT 슬라이드의 굵기에 따라 2mm-3mm 이내의 차이가 있음을 관찰할 수 있었다. z 축을 제외한 좌표의 차이는 획득한 영상에서 컴퓨터로 좌표를 옮기는 localizer 좌표 선택 과정에 발생했을 것으로 예상된다. 또한, 이 검증된 좌표와 개발된 프로그램을 이용하여 우리는 CT의 좌표를 2차원의 필름 좌표로 정확하게 변환할 수 있었다. 결론 : 이 연구로부터 기존의 C-arm 재구성 방법과 CT 재구성 방법의 비교를 통해 각 치료 기기의 신뢰성을 직접 확인할 수 있었으며, 비교를 통해 검증된 CT의 좌표를 필름 좌표로 변환시킴으로서, 각 시스템의 장점만을 결합한 효과적인 치료 계획을 세울 수 있는 가능성을 제시하였다. 또한 물과 아크릴을 사용한 비교적 간단하고 경제적인 방법으로 C-arm, CT 그리고 MRI에 모두 이용 가능한 팬톰을 제작하여 쉽고 정확하게 위치를 확인할 수 있었다. 더 나아가, 본 연구에서 제작된 자궁경부암 팬톰은 근접치료를 포함하여 관련 팬톰 개발에 도움을 줄 수 있을 것으로 예상된다.

  • PDF

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

The BIDAS Program : Bioassay Data Analysis Software for Evaluating Radionuclide Intake and Dose (BIDAS프로그램 : 방사성 핵종의 섭취량과 선량 평가용 생물학적분석 자료 해석 소프트웨어 프로그램)

  • Tae-Yong Lee;Jong-Kyung Kim;Jong-Il Lee;Si-Young Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.113-124
    • /
    • 2004
  • A computer software program, called BIDAS (BIoassay Data Analysis Software) is developed to interpret the bioassay measurement data in terms of intakes and the committed effective dose using the human respiratory tract model (HRTM), gastrointestinal tract (GI-tract) model and biokinetic models currently recommended by the International Commission on Radiological Protection (ICRP) to describe the behavior of the radioactive materials within the body. The program consists of three modules; first, a database module to manage the bioassay data, second, another databasee module to store the predicted bioassay quantities of each radionuclide and finally, a computational module to estimate the intake and committed effective dose calculated with the bioassay quantity measurement values from either an acute or chronic exposure of the radionuclies within the body. This paper describes the features of the program as well as the quality assurance check results of the BIDAS software program.

  • PDF

Comparison Study of Conventional Film-based and CT-reconstruction method in HDR Brachytherapy (고선량률 근접 방사선 치료에서 기존의 필름 방법과 CT 재구성 방법의 비교 연구)

  • 장지나;이형구;윤세철;서태석
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.63-69
    • /
    • 2004
  • HDR brachytherapy administers a large dose of radiation in a short time compare with LDR, and its optimization for treatment is related to several complex factors, such as physical, radiation and optimization algorithms, so there is a need for these to be verified for accurate dose delivery. In our approach, a previous study concerning the phantom for dose verification has been modified, and a new pelvic phantom fabricated for the purpose of localization, including a structure enabling the use of a CT or MRI system. In addition, a comparison study was performed to verify an orthogonal method that is commonly used for brachytherapy localization by comparing target coordinates from a CT system. Since the developed phantom was designed to simulate the clinical setups of cervix cancer, it included an air-filled bladder and a rectum structure shaped sphere and cylinder An N-shaped localizer was used to obtain precision coordinates from both CT and films. Moreover, the IDL 5.5 software program for Windows was used to perform coordinates analysis based on an orthogonal algorithm. The film results showed differences within 1.0 mm of the selected target points compare with the CT coordinates. For these results, a Plato planning system (Nucletron, Netherlands) could be independently verified using this phantom and software. Furthermore, the new phantom and software will be efficient and powerful qualify assurance (QA) tools in the field of brachytherapy QA.

  • PDF

Algorithm for the design of a Virtual Compensator Using the Multileaf Collimator and 3D RTP System (다엽콜리메터와 삼차원 방사선치료계획장치를 이용한 가상 선량보상체 설계 알고리듬)

  • 송주영;이병용;최태진
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • The virtual compensator which are realized using a multileaf collimator(MLC) and three-dimensional radiation therapy Planning(3D RTP) system was designed. And the feasibility study of the virtual compensator was done to verify that it can do the function of the conventional compensator properly. As a model for the design of compensator, styrofoam phantom and mini water phantom were prepared to simulate the missing tissue area and the calculated dose distribution was produced through the 3D RTP system. The fluence maps which are basic materials for the design of virtual compensator were produced based on the dose distribution and the MLC leaf sequence file was made for the realization of the produced fluence map. Ma's algorithm were applied to design the MLC leaf sequence and all the design tools were programmed with IDL5.4. To verify the feasibility of the designed virtual compensator, the results of irradiation with or without a virtual compensator were analyzed by comparing the irradiated films inserted into the mini water phantom. The higher dose area produced due to the missing tissue was removed and intended regular dose distribution was achieved when the virtual compensator was applied.

  • PDF

Development of Preliminary Quality Assurance Software for $GafChromic^{(R)}$ EBT2 Film Dosimetry ($GafChromic^{(R)}$ EBT2 Film Dosimetry를 위한 품질 관리용 초기 프로그램 개발)

  • Park, Ji-Yeon;Lee, Jeong-Woo;Choi, Kyoung-Sik;Hong, Semie;Park, Byung-Moon;Bae, Yong-Ki;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.113-119
    • /
    • 2010
  • Software for GafChromic EBT2 film dosimetry was developed in this study. The software provides film calibration functions based on color channels, which are categorized depending on the colors red, green, blue, and gray. Evaluations of the correction effects for light scattering of a flat-bed scanner and thickness differences of the active layer are available. Dosimetric results from EBT2 films can be compared with those from the treatment planning system ECLIPSE or the two-dimensional ionization chamber array MatriXX. Dose verification using EBT2 films is implemented by carrying out the following procedures: file import, noise filtering, background correction and active layer correction, dose calculation, and evaluation. The relative and absolute background corrections are selectively applied. The calibration results and fitting equation for the sensitometric curve are exported to files. After two different types of dose matrixes are aligned through the interpolation of spatial pixel spacing, interactive translation, and rotation, profiles and isodose curves are compared. In addition, the gamma index and gamma histogram are analyzed according to the determined criteria of distance-to-agreement and dose difference. The performance evaluations were achieved by dose verification in the $60^{\circ}$-enhanced dynamic wedged field and intensity-modulated (IM) beams for prostate cancer. All pass ratios for the two types of tests showed more than 99% in the evaluation, and a gamma histogram with 3 mm and 3% criteria was used. The software was developed for use in routine periodic quality assurance and complex IM beam verification. It can also be used as a dedicated radiochromic film software tool for analyzing dose distribution.

Dose Comparison between Fast Low Dose C-arm CT and DSA (Fast Low Dose C-arm CT와 DSA의 선량 비교)

  • Kim, Chan-woo;Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • The average dose of Fast Low Dose C-arm CT used during hepatic arterial chemoembolization was compared with the average dose of DSA, and the exposure dose was analyzed by analyzing the average dose for each test technique in the total accumulated dose. 50 patients were randomly selected at our clinic and compared with Fast Low Dose C-arm CT, DAP and Air Kerma of DSA, and the accumulation of four test techniques (DSA, Fast Low Dose C-arm CT, Roadmap, Fluoroscopy) The proportion of dose (DAP, Air Kerma) was analyzed. For statistical comparative analysis, the corresponding sample T test and ANOVA test (post hoc test: Tukey) were performed using the statistical program SPSS 20.0. Fast Low Dose C-arm CT showed statistically significantly lower average dose (DAP, Air Kerma) than DSA. Reducing the number of tests for DSA can reduce the patient's exposure to medical radiation.

Remote Visualization of Radiation Information based on small Semiconductor Sensor Modules (소형 반도체 센서모듈 기반 방사선정보 원격 가시화기술 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Heu, Yong-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.876-879
    • /
    • 2012
  • In this paper we studied the radiation detection technology which described the radiation level distribution in high radiation area with remotely and safely. The designed radiation mapping system was composed of radiation nodes and radiation station. The radiation nodes could sense the radiation dose values with pMOSFET radiation sensors and transmit them to the radiation station. At the radiation station the received radiation values were merged with a geometric information and visualized at the virtual graphic location. For the functional verification of the above system, we attached the radiation nodes to each corner in our laboratory, executed the mapping tests, and confirmed the designed functions finally.

  • PDF